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Abstract

�e electricity supply chain is changing, due to increasing awareness for sustainabi-

lity and an improved energy e�ciency. �e traditional infrastructure where demand

is supplied by centralized generation is subject to a transition towards a Smart Grid.

In this Smart Grid, sustainable generation from renewable sources is accompanied

by controllable distributed generation, distributed storage and demand side load

management for intelligent electricity consumption. �e transmission and distri-

bution grid have to deal with increasing �uctuations in demand and supply. Since

realtime balance between demand and supply is crucial in the electricity network,

this increasing variability is undesirable.

Monitoring and controlling/managing this infrastructure increasingly depends

on the ability to control distributed appliances for generation, consumption and

storage. In the development of controlmethodologies, mathematical support, which

consists of predicting demand, solving planning problems and controlling the Smart

Grid in realtime, is of importance. In this thesis we study planning problems which

are related to the Unit Commitment Problem: for a set of generators it has to be

decided when and how much electricity to produce to match a certain demand

over a time horizon. �e planning problems that we formulate are part of a control

methodology for Smart Grids, called TRIANA, that is developed at the University

of Twente.

In a �rst part, we introduce a planning problem (the microCHP planning

problem), that considers a set of distributed electricity generators, combined into a

Virtual Power Plant. A Virtual Power Plant uses many small electricity generating

appliances to create one large, virtual and controllable power plant. In our setting,

these distributed generators are microCHP appliances, generating Combined Heat

and Power on a domestic scale. Combined with the use of a heat bu�er, operational

�exibility in supplying the local heat demand is created, which can be used in the

planning process, to decide when to generate electricity (which is coupled to the

generation of heat). �e power output of a microCHP is completely determined by

the decision to generate or not.

�e microCHP planning problem combines operational dependencies in se-

quential discrete time intervals with dependencies between di�erent generators in

a single time interval, and searches for a combined electricity output that matches

a desired form. To illustrate the complexity of this problem, we prove that the

microCHP planning problem isNP-complete in the strong sense. We model the
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microCHP planning problem by an Integer Linear Programming formulation and

a basic dynamic programming formulation. When we use these formulations to

solve small problem instances, the computational times show that practical instance

sizes cannot be solved to optimality. �is, in combination with the complexity

result, shows the need for developing heuristic solution approaches. Based on

the dynamic programming formulation a local search method is given that uses

dynamic programs for single microCHP appliances, and searches the state space of

operational patterns for these individual appliances. Also, approximate dynamic

programming is proposed as a solution to deal with the exponential state space.

Finally, a column generation-like technique is introduced, that divides the problem

in di�erent subproblems for �nding operational patterns for individual microCHPs

and for combining individual patterns to solve the original problem. �is technique

shows the most promising results to solve a scalable Virtual Power Plant.

To apply themicroCHP planning problem in a realistic setting, the planned total

output of the Virtual Power Plant is o�ered to an electricity market and controlled

in realtime. For a day ahead electricity market, we propose stepwise bid functi-

ons, which the operator of a Virtual Power Plant can use in two di�erent auction

mechanisms. Based on the probability distribution of the market clearing price,

we give lower bounds on the expected pro�t that a Virtual Power Plant can make.

To control in realtime the operation of the Virtual Power Plant in the TRIANA

approach, the planning is based on a heat demand prediction. It has been shown

that deviations from this prediction can be ‘absorbed’ in realtime. In addition to

that, we discuss the relation between operational freedom and reserve capacity in

heat bu�ers, to be able to compensate for demand uncertainty.

As a second planning problem, we integrate the microCHP planning problem

with distributed storage and demand side load management, in the classical frame-

work of the Unit Commitment Problem. In this general energy planning problem

we give a mathematical description of the main controllable appliances in the Smart

Grid. �e column generation technique is generalized to solve the general energy

planning problem, using the real-world electricity infrastructure as building blocks

in a hierarchical structure. Case studies show the practical applicability of the

developed method towards an implementation in a real-world setting.



Samenvatting

De elektriciteitsvoorziening is aan verandering onderhevig door een toenemende

bewustwording van duurzaamheid en een verhoging van de energie-e�ciëntie.

De traditionele infrastructuur die ingericht is om lokale vraag centraal te bedie-

nen, ondergaat een transitie richting een Intelligent Net (Smart Grid). Dit Intelli-

gente Net ondersteunt duurzame opwekking uit hernieuwbare bronnen en krijgt

te maken met bestuurbare decentrale opwekking, decentrale opslag en decentrale

consumptiemogelijkheden die slim beheerst kunnen worden. De transmissie- en

distributienetwerken krijgen hierdoor te maken met toenemende �uctuaties in

de vraag naar en het aanbod van elektriciteit. Deze toenemende variabiliteit is

ongewenst, aangezien in de elektriciteitsvoorziening een continue balans tussen

vraag en aanbod dient te worden behouden.

Het monitoren en beheersen van deze infrastructuur hangt in toenemende

mate af van het vermogen om decentrale opwekking, opslag en consumptie te

kunnen sturen. In de ontwikkeling van beheers- en regelmethodologieën speelt

de wiskunde een belangrijke rol, in het voorspellen van vraag, het oplossen van

planningsproblemen en het realtime aansturen van het Intelligente Net. Dit proef-

schri� behandelt planningsproblemen. In de context van het Intelligente Net zijn

deze planningsproblemen verwant aan het Unit Commitment Problem, dat be-

staat uit een verzameling generatoren waarvoor beslissingen voor iedere generator

genomen dienen te worden: wanneer en hoeveel elektriciteit moet een generator

opwekken zodat een zeker vraagpro�el over een tijdshorizon bediend kan worden.

De planningsproblemen in dit proefschri� zijn onderdeel van een beheers- en

regelmethodologie voor Intelligente Netten genaamd TRIANA, die is ontwikkeld

aan de Universiteit Twente.

Allereerst wordt een planningsprobleem geïntroduceerd (het microWKK plan-

ningsprobleem) dat een verzameling elektriciteitsopwekkers beschouwt, die vere-

nigd zijn in een Virtuele Elektriticeitscentrale. Een Virtuele Elektriciteitscentrale

bestaat uit een grote groep kleinschalige elektriciteitsopwekkers, zodanig dat een

grote virtuele en bestuurbare centrale wordt gevormd. De generatoren die wij

bekijken zijn microWKK (Warmte Kracht Koppeling) installaties, die op een huis-

houdelijk niveau warmte en elektriciteit gecombineerd opwekken. Het niveau van

warmte- en elektriciteitsgeneratie is volledig vastgelegd door de beslissing om te pro-

duceren of niet. Door toevoeging van een warmtebu�er wordt �exibiliteit gecreëerd

in de planningsmogelijkheden om aan de lokale warmtevraag te voldoen, waar-
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door er operationele vrijheid ontstaat voor de beslissing om - aan warmteproductie

gekoppelde - elektriciteit te produceren.

Het microWKK planningsprobleem combineert operationele afhankelijkheid

voor individuele installaties in opeenvolgende discrete tijdsintervallen met afhan-

kelijkheid tussen installaties in enkelvoudige tijdsintervallen, en vraagt naar een

gecombineerde elektriciteitsopwekking die overeenkomt met een gewenst pro�el.

In het kader van complexiteitstheorie wordtNP-volledigheid van dit probleem

bewezen. Door het microWKK planningsprobleem te modelleren als geheeltallig

lineair probleem of via een structuur die gebruik maakt van dynamisch programme-

ren, worden pogingen beschreven om praktijkvoorbeelden optimaal op te lossen.

Naast het gevonden complexiteitsresultaat tonen de benodigde rekentijden voor

het optimaal oplossen van deze praktijkinstanties aan dat een oplossing voor dit

planningsprobleem gevonden moet worden in een heuristiek. Een eerste heuristiek

is gebaseerd op de exacte aanpak die gebruik maakt van dynamisch programmeren.

Deze methode lost de operationele planning op voor individuele microWKKs (in

een relatief kleine toestandsruimte per microWKK) en doorzoekt de oorspron-

kelijke toestandsruimte door kunstmatige prijssignalen aan te passen voor deze

individuele problemen. Een tweede methode benadert de bijdrage van de toestands-

overgangen in de volledige toestandsruimte en stuurt deze toestandsovergangen bij

naargelang de uitkomst van de planning. Ten slotte wordt een methode voorgesteld

die ideeën overneemt uit kolomgeneratie, waarin het planningsprobleem wordt

opgedeeld in verschillende deelproblemen voor het vinden van beslissingspatro-

nen voor individuele microWKKs en voor het combineren van zulke patronen

om het oorspronkelijke probleem op te lossen. Deze methode gee� veelbelovende

resultaten om een schaalbare Virtuele Elektriciteitscentrale te kunnen plannen.

In de praktijk zal een Virtuele Elektriciteitscentrale ook moeten acteren op een

elektriciteitsmarkt en is op basis van de gemaakte planning een continue aanstu-

ring vereist. Voor een elektriciteitsmarkt waarop een dag van tevoren elektriciteit

wordt verhandeld, geven wij advies voor stapsgewijze biedingsfuncties, die de ex-

ploitant van de Virtuele Elektriciteitscentrale kan gebruiken in twee verschillende

veilingmechanismen. Gebaseerd op de kansverdeling van de marktprijs geven we

ondergrenzen voor de verwachte winst die een Virtuele Elektriciteitscentrale kan

maken. De TRIANA aanpak kiest voor een samenwerking tussen voorspelling,

planning en continue aansturing. Afwijking ten opzichte van de voorspelling kan

grotendeels worden opgevangen in de continue aansturing. Daarnaast maken we

onderscheid tussen het deel van de warmtebu�er dat gebruikt wordt in de plannings-

fase en de reservecapaciteit die gebruikt wordt om afwijkingen van de voorspelling

op te vangen, zodat bijsturing in de praktijk vermeden kan worden.

Een tweede planningsprobleem integreert het microWKK planningsprobleem

met andere vormen van decentrale opwekking, opslag en consumptie in het klas-

sieke raamwerk van het Unit Commitment Problem. Dit algemene energie-plan-

ningsprobleem gee� een wiskundige beschrijving van de combinatie van de belang-

rijkste beheersbare decentrale elementen in het Intelligente Net. De kolomgeneratie

methode wordt gegeneraliseerd naar het algemene energie-planningsprobleem,

welke gebruik maakt van de hierarchische infrastructuur van de elektriciteitsvoor-
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ziening om een methode op te bouwen die schaalbaar is. Onderzoeksvoorbeelden

tonen aan dat de ontwikkelde methode praktisch toepasbaar is richting een imple-

mentatie in het bestaande netwerk.
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CHAPTER 1
Introduction

It is hard to imagine aworldwithout electricity. In the current organization structure

of our society electricity plays a key role in communication, lifestyle, security,

transportation, industry, health care, food production; in fact almost any aspect of

society makes use of electricity. In this context we may state that the availability of

electricity enabled the world population to grow towards the current size. Moreover,

it is not unrealistic to state that the high standard of living cannot be kept when the

electricity system collapses. Reliability of electricity supply is therefore extremely

important.

To o�er a reliable and stable electricity supply an enormous infrastructure is

used, which takes care of the transmission and distribution of electricity from the

production side to the consumption side. Di�erent measures are taken to secure

this infrastructure from local disruptions in the system. �ese measures include

technical equipment to disconnect failing parts of the electricity grid and control

mechanisms that can adapt to changing demand with respect to these kinds of

disruptions in the system. To this end it is necessary to have backup (spinning

reserve) capacity at hand at all times. Furthermore, di�erent electricity markets

exist and o�er organizational structures for supply and demandmatching, including

spinning reserve capacity. �is emphasizes the realtime nature of electricity supply:

electricity demand needs to be supplied instantly.

�e electrical energy origins from di�erent energy resources. �ese energy

resources are divided into two groups: depletable energy sources and renewable

energy sources. Examples of depletable sources are fossil fuels (e.g. gas, coal and

oil), where wind, sun and water are examples of renewable energy sources. Due to

the ongoing global debate on sustainability and climate, a trend can be identi�ed in

the electricity supply, that shows a move from depletable energy sources towards

renewable energy sources.

Next to this shi� towards sustainability, the energy e�ciency of the electricity

production and consumption is continuously improved. �e primary usage of en-
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ergy resources can be decreased by improving the energy e�ciency, which together

with the sustainable shi� helps reducing greenhouse gas emissions.

Both the sustainability shi� and the search for improving energy e�ciency lead

to a decentralization of the electricity supply chain: an increasing amount of electric-

ity is produced (on a smaller scale) distributed at the consumption side of the supply

chain. �is decentralization leads to increasing challenges for the electricity grid;

as opposed to the previously occurring one-way tra�c of electricity, now electricity

may �ow bidirectionally through the grid and comes from more dispersed sources.

Also, due to the increasing amount of renewable energy sources the electricity

production is subject to increasing uncertainty; renewable energy sources are not

ideally suited for use as controllable production units in the electricity supply.

�e above mentioned electricity generation, consumption, transmission, distri-

bution, storage, and the management and control of these elements play an essential

role in the electricity supply chain. �is electricity supply chain is subject to many
changes, that lead to the idea for an improved/adapted infrastructure: the concept

of Smart Grids. It is an interesting �eld for developing new control andmanagement

methodologies. A control methodology that especially takes the partial decentraliza-

tion of the electricity supply into account is developed at the University of Twente.

�is methodology is called TRIANA.�e work in this thesis is part of the TRIANA

methodology and especially focuses on mathematical planning problems involving

decentralized generators, consumption and storage. We focus on combinatorial

problems where generators cooperate in a so-called Virtual Power Plant, and on

extensions of the well studied Unit Commitment Problem. In the case of the Virtual

Power Plant we use the outcome of the planning problems to act on an electricity

market.

In the following sections we give an extended introduction to the background

of Smart Grids that underlies this thesis. We discuss the electricity supply chain

in Section 1.1. Section 1.1.2 introduces the di�erent electricity markets. �e devel-

opments in the electricity supply chain are given in Section 1.1.3. �en we give the

organizational structure of a Virtual Power Plant in Section 1.2. We conclude with a

description of the problem statement in Section 1.3 and an outline for the rest of

the thesis in Section 1.4.

1.1 The electricity supply chain

�e electricity supply chain deals with the challenge of continuously matching

electricity demand with supply. In the electricity supply chain �ve main areas of

interest can be identi�ed:

• production (we also use the terms generation or supply)

• consumption (demand)

• transmission and distribution

• storage
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• management and control.

Technological, economical and political developments lead to an interesting evo-

lution of the classical infrastructure towards the so-called Smart Grid. In this

section we sketch the basic behaviour of the electricity supply chain, and show the

developments that lead to the Smart Grid.

1.1.1 the basic electricity supply chain

We start by giving a general overview of the basic principles by which electricity

is produced and delivered to the customer. �e actors in the di�erent areas are

identi�ed and the interaction between them is sketched.
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Figure 1.1: �e development of the Dutch electricity production

�e growth of the electricity production in�eNetherlands is depicted in Figure

1.1. �is data is derived from [3]. In the classical infrastructure, this production is

mostly given by the electricity generation from centrally organized power plants

that are connected directly to the transmission grid. Examples of traditional power

plants are gas-, coal- or oil-�red power plants or nuclear power plants. �ese

generation plants di�er in size: their capacity ranges from tens/hundreds of MW

for the largest part of these generators, up to more than 1 GW for some very large

plants. An increasing amount of electricity production is directly connected to the

distribution grid, as Figure 1.1 shows. Opposite to most common supply chains,

electricity has to be instantly supplied, whenever demand occurs. An important
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feature to distinguish between power plants is their ability to react on altering

demand. �e generators that can react fast are called peak plants, since they take

care of the �uctuating peak demand in the electricity consumption. Since they have

to respond very fast to �uctuating demand, in general their energy e�ciency is

relatively low, compared to the energy e�ciency of the power plants that mainly

supply the electricity base load. Already this di�erence shows that it is bene�cial to

decrease peaks in the electricity demand, in order to improve the energy e�ciency

of generation.

To transport electricity, a large infrastructure has been constructed. �is in-

frastructure can be divided into two types of grids: a transmission grid and a

distribution grid. �is division is related to the voltage levels at which the grids

operate. �e higher the voltage level, the more e�ciently equivalent amounts of

electricity can be transported over long distances, since transmission losses depend

on current instead of voltage. However, high voltage lines need to be better insu-

lated and bring in general more safety risks. Considering the capacity of di�erent

connections, corresponding transport losses, safety and (insulation) costs, a choice

has been made to divide the transportation infrastructure into a transmission grid

and a distribution grid. �e transmission grid is operated and maintained by the

Transmission System Operator (TSO); in �e Netherlands this is TenneT [13]. �is

high voltage grid consists of 380 kV, 220 kV, 150 kV and 110 kV lines. Transformers

Figure 1.2: �e transmission grid of �e Netherlands
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are used to change the voltage level for the di�erent connections. �e distribution

grid is connected to the transmission grid and is operated by Distribution System

Operators (DSOs). In �e Netherlands there are 9 DSOs. Where a TSO is responsi-

ble for large-scale electricity transmission, a DSO is responsible for the �nal part in

the electricity supply chain, i.e. the delivery towards the customer. It uses medium

voltage lines of 50 kV and 10 kV, and transforms the voltage level eventually to the

230 V that is currently used in�e Netherlands at the consumption side. TSOs and

DSOs are monopolists in their respective areas. �erefore, they are bounded by

regulations set by governmental authorities (e.g. Energiekamer in�e Netherlands)

with respect to price setting for transporting electricity.

At the consumption side, stability and reliability are essential elements in the

electricity supply chain. Reliability deals with the availability of the connection to

the grid. Since the society depends heavily on electricity, the reliability of the grid

should be large. In �e Netherlands the reliability is very large; on average there

is an interruption in the electricity supply of half an hour per year per household

connection (23 minutes in 2011 [10]), which comes down to a reliability of 99.996%.

�is reliability is higher than in Germany (40 minutes), France (70 minutes) and

the UK (90 minutes). Next to reliability, stability of the electricity supply is also

important. Stability is the ability to keep the electricity supply at 230 V and 50 Hz

(from a household perspective). Deviations from these values may lead to severe

reductions in the lifetime of electronic equipment or even to defective equipment.

Consumers, with the focus on domestic consumption in particular, pay for their

consumption as well as for their connection, via contracts with an electricity retailer.

Currently the electricity prices are determined by the retailer for a given time period

(in the order of months), either at a constant rate or based on the time of use (e.g. a

day/night tari�).

Storage of electricity is not applied at a large scale, due to e�ciency losses and

economical costs of storage systems. �erefore, the challenge in the electricity

supply chain is to continuously �nd a match between consumption and production.

To �nd this match the di�erent actors within the electricity supply chain need to

exchange information. However, their acting is driven by their own objectives.

Electricity retailers can make fairly good predictions of the consumption of their

consumers. Before the liberalization of the electricity market, which was �nalized in

the year 2004, these retailers were o�en also active at the production side by owning

power plants. Currently a strict separation between retailing and producing actors

is demanded, such that the market is more transparent. Production companies

want to optimize their energy production, considering fuel costs, maintenance

costs, revenue, etcetera. �is leads to the situation that demand (in the form of

electricity retailers) and supply (generation companies) are settled on an electricity

market and cleared for a certain price. Note, that there are many forms of electricity

markets, resulting in a dispersed settlement with a possible range of prices for each

moment in time. TSOs/DSOs have the responsibility to secure a stable grid all the

time. When the market actors operate exactly as they have settled by using the

available market mechanisms on beforehand, demand and supply are balanced and

stability measures by the TSO/DSOs are not required. However, the process of
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electricity production and consumption is subject to uncertainty, which o�en leads

to an imbalance in the supply chain. If such an imbalance occurs, a TSO has the

ability to correct this imbalance by coordinating the increase/decrease of electricity

generation. To this end, a reserve capacity is always standby. Moreover, the actors

that are causing the imbalance are penalized.

1.1.2 electricity markets

As of July 1, 2004 the energy market was completely liberalized and consumers were

able to choose their electricity and gas suppliers. From a supplier point of view this

means that the supplier needs to o�er a high quality of service to the consumer.

In an ideal world this would mean that there is a full competition between energy

suppliers (retailers). In practice, the liberalization led to an increase of the number

of retailers. However, it is concluded in [26] that market entry is still di�cult for

small entities, since governmental regulations limit the way the electricity retailers

may act. For that matter, these governmental regulations are intended to protect

the consumer and recover/keep the con�dence in the market. [106] shows that in

practice consumers do not switch between retailers easily; [111] reports on increasing

switches between retailers, but simultaneously reports that the three largest retailers

in�e Netherlands (i.e. Essent (RWE), Eneco and Nuon (Vattenfall)) still have a

market share of 80.6% in July 2010.

Electricity retailers have contracts with their consumers to deliver electricity

against a prescribed pricing system. To be able to really deliver the electricity, these

retailers predict the consumption of their consumers and buy the corresponding

amounts on the electricity market. In that way, their performance on the market

determines to a large extent the pro�t they can make.

From the production point of view, generators are more and more subject to

market competition. Generation companies need to actively bid their production

capabilities on electricity markets. �is enlarges the importance of minimizing

operational costs, due to the fact that pro�t margins are under pressure.

Production and consumption meet at the electricity market [39, 118, 125]. �e

electricity market consists of di�erentmarkets, based on the duration of the contract

and theway inwhich the contract is realized. We di�erentiate between long/medium

term markets and short term markets.

Long and medium term markets

Since energy balance is crucial in electricity markets, a good prediction of demand

versus the available supply is necessary. A large share of the energy demand is very

predictable, which implies that a large part of electricity can be traded at long term

markets. For these amounts, electricity contracts are signed between electricity

producers and retailers, up to three years in advance. �ese long term contracts are

o�en agreed in a bilateral way [74], meaning that a single producer (power plant)

and a single consumer (retailer) close a deal between each other. Standardized

contracts are also available, to a smaller extent.



7

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

As the day of delivery comes closer, more electricity is traded in medium term

contracts (months in advance), as the prediction of the demand gets more accurate.

Again, most of these contracts are bilateral.

Short term markets

To smoothen the rough pro�le of demand/supply amounts that are already settled

via long term contracts, short term markets are used to exchange the �nal amounts

of electricity via standardized trading blocks, day ahead markets, intraday markets

and balancing markets.

In general, the prices on the day ahead market and balancing market are higher

than on the long term market, due to relative inelastic demand. On the day ahead

market electricity is traded in 24 hourly blocks, which are cleared a day in advance.

Based on the latest predictions [17, 44], the last portion of the electricity pro�le

is traded. �is market is open for many demand and supply participants and is

cleared by the market operator.

On the day of delivery, electricity can be traded on the intraday market. On

this market, recently developments related to disturbances in demand or supply

are settled by retailers and generation �rms. �e intraday market is organized

by bilateral contracts (e.g. the APX intraday market) or standardized blocks (e.g.

the APX strip market) [20]. �e balancing market is a realtime market, in which

realtime deviations from agreed long and short term contracts are settled by the

TSO. In case demand di�ers from the predictions, or in case settled generation

cannot be delivered, an imbalance occurs in the electricity network. �is imbalance

needs to be repaired to guarantee stability and reliability in the grid. �erefore

the balancing market is a place where ancillary services as spinning reserve and

congestion management are o�ered. Spinning reserve consists of the ability of

generators to generate additional amounts of electricity when the TSO asks for it,

to match balance disturbances. A generator gets paid for o�ering this ability, even if

it does not have to produce electricity at all. Congestion management consists of a

means for the TSO to manage loads that are exceeding the capacity of the network,

which attracts more and more attention, due to recent developments towards the

decentralization of the electricity supply chain. In this case the TSO can ask some

generators to produce less electricity, and ask generators in a di�erent part of the

network to overtake this load, such that balance is preserved or network constraints

are met.

Note, that in the literature o�en the term spot market is mentioned. However,

it is used for both the day ahead market as well as for the balancing market. To

avoid confusion between these terms, we stick to the terms day ahead market and

balancing market.

�e electricity market of �e Netherlands

Since the day ahead market is a market that gets centrally cleared and is open to

competition between di�erent demand and supply participants, it is an interesting
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market to study in more detail. In this thesis we focus on the electricity markets of

�e Netherlands [2]. �e Amsterdam Power Exchange (APX) is a central market

where electricity and gas is traded between market participants in �e Nether-

lands and surrounding countries. �e APX is established in 1999 as part of the

liberalization of the electricity market. Currently the Dutch market is coupled to

the markets of surrounding countries, which enables an interaction between the

di�erent markets.

To get some feeling for the prices on the day ahead market on the APX, we

collected data from November 22, 2006 until November 9, 2010. Figure 1.3 shows
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Figure 1.3: �e market clearing prices of the APX day ahead market for the period

22/11/2006 - 9/11/2010

the development of themarket clearing price on the day aheadmarket. In Figure 1.3a

the average hourly price is depicted for each day. �e average price is 48.87e/MWh
for the complete time horizon, with a minimum daily average of 14.83e/MWh and
a maximum of 277.41 e/MWh. In general no real trend in the development of the
electricity prices can be found, other than that prices stabilize a�er a temporary

peak in 2008. �e average hourly price per month in Figure 1.3b �lters daily peaks

and shows the high prices in 2008 more clearly.

Figure 1.4 shows the development of the traded volumes during the same time

horizon. Over the complete horizon, the average hourly volume is 3012.86 MWh,

with a minimum of 1039.0 MWh and a maximum of 6744.8 MWh. �e �gure

shows that an increasing amount of electricity is traded on the day ahead market in

�e Netherlands. In 2007 the market share of the (short term) day ahead market

was 19.7% of the total generated electricity; in 2010 already 28.1% was traded on a

daily basis.

Market power

�is increase in market share of short term electricity markets is also re�ected in

the extensive literature that is available on market participation and market power.
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Figure 1.4: �e traded volumes of the APX day ahead market for the period

22/11/2006 - 9/11/2010

Market power is the ability of single market participants (producers) to in�uence

the market clearing price, by strategically bidding, instead of bidding their true

marginal costs, which is optimal in a competitive market. �e work of [48] shows

that strategic bidding can lead to increasing market prices; this has important

implications for the design and governance of electricity markets. An example of

exercisingmarket power are given by [126], which show that on the Dutch electricity

market in 2006 during many hours one or multiple producers were indispensable

to serve the demand, which made them capable of setting the price. In [93] scarce

availability of generation capacities result in the exercise of market power in the

sense that a generation company could in�uence the market price by withdrawing

one of its generators from the market. It shows that investments in generation

could decrease market power. [36] shows that the interconnection of two markets

in Italy (North and South) mitigates the market power of one large generation

company, whereas [104] concludes that the integration of di�erent markets can

cause price disruptions, showing that interconnection between markets does not

always lead to improvements. �e work of [80] on double-sided auctions includes

active bidding of retailers on di�erent markets, which shows a decrease in market

power of generation �rms and results in more stable equilibria on these markets.

Other incentives to reduce market power are presented in [132] and [110]; the latter

prevents large generators to use market power, where the �rst concentrates on

social welfare in market mechanisms. To illustrate that electricity markets can

function well, [55] shows that there is no evidence of exercised market power in

the Scandinavian Nord Pool market in di�erent periods of time. Also, [23] presents

that long term markets mitigate market power on short term spot markets.

Related to the discussion of exercising market power is the choice for an auction

mechanism. Di�erent auction mechanisms for day ahead markets are studied. We

mention two of them: Uniform Pricing (UP) and Pricing as Bid (PAB). In an UP

mechanism all generation companies that win the auction, get paid a uniform price,
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i.e. themarket clearing price. In a PABmechanism each auction winning generation

company gets paid its own o�ered price. �e discussion between the choice for UP

and PAB concentrates on the fairness of the received price and strategic behaviour

of producers [25, 47, 100, 132]. In UP some generation companies with lowmarginal

costs receive a price that is well above this cost, such that eventually consumers pay

unnecessarily high prices. On the other hand, the UP mechanism gives incentives

for the producers to o�er electricity at their true marginal costs, while PAB gives an

incentive to bid strategically.

1.1.3 developments in the electricity supply chain: the emergence of

the smart grid

Managing the electricity supply chain does not solely consist of traditional produc-

ers and consumers acting on the electricity market and awaiting the realtime control

of network operators and power generation companies. Increasingly, distributed

generation, distributed storage and demand side load management is applied in

the electricity supply chain. �is development has strong in�uences on the way

the di�erent areas (production, consumption, storage, transmission and distribu-

tion, and management and control) of the traditional supply chain are managed

and balanced, and leads to a growing need for decentralized intelligence in the

electricity supply chain and, thus, to the emergence of the Smart Grid. Distributed

generation, distributed storage and demand side load management display into a

massive amount of dispersed controllable appliances, for which decision making

is necessary. To enable such a dispersed decision making in an electricity system,

that is very dependent on balance, asks for communication and management sys-

tems. �e complete infrastructure, consisting of measuring, communicationa and

intelligence, that enables the large-scale introduction of distributed energy entities

is called a Smart Grid. �e key motives for the change towards a Smart Grid are

improved energy e�ciency and sustainability of the electricity supply. It results in a

bidirectional electricity infrastructure, since the traditional consumption side now

also has possibilities to produce electricity.

In the following, we shortly sketch some e�ects in the di�erent areas of the

electricity supply chain.

Production

In the �eld of production, distributed generation is increasingly applied. �is

generation emerges in two general types: sustainable distributed generation and

energy e�ciency improving generation.

Examples of - less controllable - sustainable production are wind turbines (see

e.g. [21, 22, 51, 85, 129]) and solar panels (e.g. [24, 52]). �e generation capacity of

di�erent types of sustainable generation is limited by the geographical environment

of the local area/country. Within these geographical restrictions a lot of research

focuses on location planning of wind and solar generation (e.g. [129] studies the

in�uence of atmospheric conditions on wind power, [21] searches for good geo-
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graphical locations of wind turbines and [52] combines large scale solar generation

in deserts with a supergrid in Europe). Depending on each countries situation, a

certain mixture of sustainable generation is desirable, which leads to a speci�c shi�

towards renewable energy for each country. In general, this shi� towards renewable

energy brings along more �uctuating and less controllable generation. To allow a

large share of sustainable generation, advanced control methodologies are therefore

necessary to reduce the �uctuation. An example of such a control system is the

integration of wind turbines and Compressed Air Energy Storage (CAES) [22], to

reduce �uctuations in generation. Realtime excess or slack of energy is captured by

controlling the air pressure in large caves, which allows storage of large amounts of

energy.

An example of energy e�ciency improving generation that is controllable is

Combined Heat and Power (CHP). Such controllable generation is also the focus of

this thesis. Although research is performed on di�erent possibilities for small-scale

CHP (25 - 200 kW) [16], we limit ourselves to CHP with output at the kW level on

a domestic scale (microCHP). An initial summary of the potential for microCHP

in the USA is given by [122]. �e study of [50] concludes that a reduction of

6 to 10 Mton of CO2 is possible in the year 2050 by applying microCHP in the
built environment; [103] concludes that CO2 savings between 9% and 16% for 1
kW microCHPs are possible, which o�ers a signi�cant reduction compared to

other possible domestic measures. A microCHP produces both heat and electricity

for household usage at the kW level; the electricity can be delivered back to the

electricity grid or consumed locally. �e control of the microCHP is heat led,

meaning that the heat demand of the building de�nes the possible production of

heat and, simultaneously, the possible electricity output. Combined with a heat

bu�er, the production of heat and electricity can be decoupled and an operator has

�exibility in the times that the microCHP is producing, which creates a certain

degree of freedom in electricity production. �is operational freedom gives us

�exibility in control. Realtime operating strategies, showing the potential of control,

are given in [37, 61, 69].

�e output of a single distributed generator is in general much smaller than that

of common power plants. Wind turbines generate in the order of MW, microCHPs

in the order of kW. However, the total potential is large when applied on a large

scale.

Consumption

At the consumption side of the electricity supply chain, developments in domestic

consumer appliances lead to more �exibility in local control. For example, Heating,

Ventilating and Air Conditioning (HVAC) systems o�er large possibilities in man-

aging electricity consumption [128]. Controllable washing machines, dryers, fridges

and freezers add up to about 50% of the total electriciy demand of a household

[35]. Also heat pumps [75] are introduced to supply domestic heat demand, by

transferring energy from the soil or the outside air.
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�is development means that the total load pro�le of a household gives room

for adjustment by a control system, as opposed to the traditional uncontrollable con-

sumption. Such control systems are referred to as demand side (load) management.

Next to this controllability, there is the possibility to improve the energy e�ciency

of consumer appliances. In this context, consumer awareness is an important factor.

�e awareness of class labels during the purchase of energy e�cient appliances is

increasing, but, as in many other �elds, it is still mostly money driven [92]. �e

paper of [99] analyzes the e�ect of policies on the consumer behaviour that can

lead to both energy saving and an increase in energy e�ciency. �ey show that

self-monitoring can be a good option to increase awareness and thus aim for energy

saving behaviour and that �nancial compensation for the relative high threshold

for taking action towards energy saving behaviour has a better e�ect than taxing

individuals for their energy usage.

Storage

Electricity storage is in principle the most helpful tool to control balance in the

electricity supply chain. �e temporary �uctuations in demand and supply can

be managed much easier, when large bu�ers are available to put excess energy in

and to withdraw energy from when there is additional need for energy. So far

however, it is not used at a large scale. �is is mostly due to its relatively high costs,

in combination with e�ciency losses and life time cycles. New storage techniques

are emerging though. At a domestic scale, electricity storage can be combined with

a power supply system as in [9]. �e emergence of the electrical car brings along

the opportunity to use the battery as a storage device, rather than only charging the

battery, when the car is parked. Since on any time, 83% of the cars in California

are parked, even during commuting hours [76], this gives the opportunity to form

a Vehicle to Grid system, which could help the voltage/frequency control in the

grid [71, 76]. At a larger scale, CAES can help control the �uctuation of wind parks,

as well as pumped hydro-electric energy storage (the possibilities to exploit both

systems in Colorado are described in [86]).

Transmission and Distribution

�e increased �exibility in the generation of electricity and in the usage of con-

trollable consumer appliances and storage, may have e�ects on the transmission

and, in particular, the distribution grid. �e bidirectional electricity �ow gives both

an increased attention towards load and congestion management and may ask for

technical improvements in the infrastructure (e.g. a smart metering infrastructure

has to be clearly de�ned and implemented).

On a nationwide scale, the interconnection between countries is developing.

An example is the NordNed cable between Norway and �e Netherlands [57].

[78] shows a smart MV/LV-station that improves power quality, reliability and

substation load pro�le. It anticipates on the smart grid and bidirectional electricity

�ow. �e work presented in [124] is oriented to maximize the amount of local
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generation capacity while respecting the load limitations of the distribution network,

whereas [59] demonstrate a so�ware tool for alternative distribution network design

strategies.

Management and control

As mentioned before, the introduction of distributed (sustainable) generation and

the increased use of intelligent consumption and storage devices, demands for

advanced energy monitoring and control. �e introduction of smart metering is

a �rst step towards intelligent control. Realtime load balancing and congestion

management in distribution networks are mentioned before. A large system that is

in use for years in the traditional electricity supply chain is SCADA (Supervisory

Control And Data Acquisition), that, in combination with grid protection systems,

secures the actual generation of electricity. In this system, human operated control

rooms oversee and steer, in combination with the help of computer programs,

the realtime generation. �e mathematical basis of these computer programs is

described in the Unit Commitment Problem. For the existing literature on Unit

Commitment, we refer to Chapter 2.

�e potential for Smart Grids is extensively studied. �e study of [52] to cre-

ate a supergrid in Europe and the northern part of Africa is already mentioned.

An overview of distributed generation with a large share of renewable sources in

Europe is given by [54, 123]; [121] gives an extensive analysis of the possibilities

for distributed generation in Australia. For �e Netherlands, [113] explains that a

transition to smart grids o�ers many opportunities and high potential bene�ts for

�e Netherlands.

Strategic planning, regarding the location and type of generation and infras-

tructural possibilities, also plays a role in management systems. Di�erent use cases

of di�erent countries, regarding strategic planning for advanced local energy plan-

ning, are studied in [72]. [97] o�ers modelling so�ware for strategic decisions; a

grid infrastructure can be made by selecting generators and other components

(transformers, storage, etcetera) for which a global analysis is made.

Several ICT oriented methodologies are proposed to control andmanage (a part

of) the new Smart Grid [35, 46, 83, 84, 96], in addition to the already existing man-

agement systems that aim at dispatching generation (i.e. Unit Commitment), load

balancing and congestion management. Some of these methodologies are especially

focusing on speci�c objectives; [46] applies stochastic dynamic programming to

facilitate a single generator with multiple storage possibilities, and [35] concentrates

on micro energy grids for heat and electricity. �e work of [84] uses a Multi Agent

System (MAS) approach to manage power in an environment of hybrid power

sources, based on an electrical background and thus especially focusing on elec-

trical behaviour. From a policy point of view, [81] investigates investment policies

of wind, plug-in electric vehicles, and heat storage compared to power generation

investments, and studies the in�uence of the unreliability of wind generation. As

an example of more generic energy control methodologies, we refer to [83] and

[96]. �e PowerMatcher of [83] proposes a MAS approach for supply and demand
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matching (SDM). �e TRIANA methodology of [96], of which this thesis forms a

part, uses a hierarchical control structure in which, at several levels, energy supply

chain problems are solved using a three step strategy: prediction, planning and

realtime control.

1.2 Flexible and controllable energy infrastructure

�e previous subsection shows that the request for sustainable generation and the

emergence of distributed, more energy e�cient, generation, storage and load side

management leads to a change of the electricity supply chain towards a Smart Grid.

In this context there is a substantial di�erence between controllable appliances

(microCHP/micro gas turbines/heat pumps) and noncontrollable generation (so-

lar/wind). To compensate for �uctuating noncontrollable generation, a certain

share of generation in the complete electricity supply should be controllable and

also actively controlled. A large part of this thesis focuses, from a mathematical

point of view, on a speci�c emerging technique that can be controlled to some

extent: microCHP. MicroCHP control can manifest in several ways. For example,

individual control of microCHP operation can be aimed at pro�t maximization or

cost minimization for a household. In a developing Smart Grid, a (two-way) vari-

able pricing scheme for the use of electricity may be implemented, that in general

asks a high price for the consumption of electricity during peak hours and lowers

the price during baseload hours. In this case the operation is steered towards high

priced hours, such that the electricity that is delivered back to the grid brings in

the most money, or the demand in high priced hours is supplied locally, such that

the imported electricity and its associated costs are minimized. A microCHP can

also be used to provide electricity in case of blackouts (islanded operation). �e

last two types of control however, are not considered in this work. We focus on

combined optimization of the planned operation of a large amount of microCHPs

in a large-scale Energy Cooperation: a so-called Virtual Power Plant.

1.2.1 virtual power plant

AVirtual Power Plant (VPP) combines many small electricity generating appliances

into the concept of one large, virtual and controllable power plant. �is VPP

can be comparable to a normal power plant in production size. However, the

comparison ends here. Due to the geographically distribution of generators, the

physical electricity production from a VPP has a complete other dimension than the

production from a large generator that is located at a single site. �e wide-spread

distribution of generators asks for a well-controlled generation method. Instead

of controlling one large generator, which has a limited number of options (i.e. not

generating, generating at full power, and several decidable generation levels in

between), all generators in a VPP can be individually steered. �ese generators

must be scheduled or planned to generate at di�erent times of the day in such a

way, that the combined electricity production of all generators matches a given

generation pro�le that resembles the production of a normal power plant.
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We consider a VPP that consists of microCHP appliances. Although the steer-

ing of such a VPP is more complex than the steering of a normal power plant, the

increase in energy e�ciency due to the usage of both heat and electricity (95%

compared to the 35%-50% of conventional power plants) shows the added value

of such a VPP. �e planned dispatch of generation depends on the objective of

the controlling entity of the VPP. We focus on operating on the day ahead elec-

tricity market; compared to a conventional power plant the �exibility of the VPP

is not deemed large enough to o�er balancing capacity. In Chapter 2 additional

information on the choices for our VPP are given.

1.3 Problem statement

Many challenges exist in the evolving energy infrastructure. In mathematics, these

challenges are usually called problems. We conform to this notation and use the
term problem in the remainder of this thesis for the challenges we try to tackle.

Research focus

Planning problems in the energy supply chain can be divided into long term and

short term problems. �e long term problems are strategic decision problems, vary-

ing from location planning of power plants [73] or windmill parks [21] to portfolio

selection problems [90] or long term generation contracts [74]. �ese problems

treat the strategic planning of the production capacity of a certain stakeholder. On

a shorter notice of time, the available production capacity has to be operated in

an optimal way. In this thesis, we consider short term planning problems in the

energy supply chain. We consider planning problems for a Virtual Power Plant,

and a generalized energy planning problem with a focus on domestic, distributed

generation, storage and demand side management.

�e Virtual Power Plant case focuses on household sized appliances; miniCHPs

and small biomass/biogas installations are not the primary focus, but they could

be modelled as well in the general energy planning problem. We introduce the

microCHP planning problem as the main problem for our VPP. For these small-

sized microCHP appliances, scalability is a most demanding task. It should be
possible to eventually plan the operation of millions of microCHPs. Together with

scalability, we demand feasibility of the planned operation in two aspects. First,
each individual microCHP should be operated, such that the basic heat demand in

households is supplied, without harming the comfort of the consumers. Secondly,

the combined electricity generation of all microCHPs has to ful�ll desired bounds

on the total output, either resulting from network constraints or market desires.

Limited computational capacity is a natural requirement for both scalability and
feasibility.

For the Virtual Power Plant we consider discrete planning problems and brie�y

sketch the in�uence of demand uncertainty. Furthermore a connection is laid

between the ability to �nd a certain production output for a Virtual Power Plant

by solving a planning problem and the practical problem of actually acquiring this
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production pro�le as the settled result of an electricity market. We present a way of

acting on a day ahead electricity market and discuss the in�uence of two market

clearing mechanisms: Uniform Pricing and Pricing as Bid. In the case of the Virtual

Power Plant Pricing as Bid may give an incentive to actively bid on the market, since

our VPP has no operational fuel costs attached (see the de�nition of a business case

in Chapter 2).

�e general energy planning problem gives an extension of the Unit Commit-

ment, with special attention to distributed energy appliances. �is problem includes

the microCHP planning problem and other types of distributed generation, dis-

tributed storage and demand side management possibilities. Since this general

energy planning problem deals with di�erent elements within the electricity supply

chain, the goals for these participating elements may di�er. �erefore the general

energy planning problem combines multiple (possibly decentralized) objectives.

1.4 Outline of the thesis

In this introductory chapter an overview of the background of the electricity supply

chain is given. Based on this introduction, Chapter 2 elaborates on some research

areas and developments, that deserve an extended background information. In

Chapter 3 the microCHP planning problem is studied in detail, and heuristics are

developed to solve this problem. Chapter 4 treats the positioning of the planning

problem in the TRIANA methodology, and Chapter 5 discusses a way of acting on

electricity markets. A general energy planning problem is presented in Chapter 6.

Conclusions and recommendations for future work are depicted in Chapter 7.



CHAPTER2
Contextual framework

Abstract – �is chapter gives extended background information on topics that
are closely related to our work. First we treat the Unit Commitment Problem, which
gives the general mathematical description of the dispatch of electricity generation
by a set of power plants. We also discuss recent developments in this �eld, which
show a shi� towards integrating relatively new electricity markets and a focus
on stochastic in�uences of demand uncertainty. Secondly we give some details
on Virtual Power Plants that are based on microCHP appliances and discuss a
business case for such a Virtual Power Plant. �irdly, the TRIANA 3-step control
methodology for decentralized energy management, developed at the University of
Twente, is presented. Fourthly, we present an energy �ow model, that serves as a
reference point for energy balancing.

�is chapter builds upon the introduction that is given in Chapter 1. We give

additional background information that further speci�es the �eld to which the

contribution of this thesis applies. First we discuss the Unit Commitment Problem.

In Chapter 6 we extend this basic problem formulation by adding distributed pro-

duction, storage and demand side load management. Secondly we show related

work on Virtual Power Plants that consist of microCHP appliances. A business case

for such a Virtual Power Plant is given, which forms the basic background for the

developed planning methods and market participation within this work. Next we

give an overview of the 3-step control methodology for Smart Grids (TRIANA),

that embeds the planning problems that are presented in this thesis in a complete

(domestic) Smart Grid management system, consisting of prediction, planning

and realtime control possibilities. An energy �ow model, that underlies this TRI-

ANA methodology, is also discussed, since it gives a better understanding of the

realtime balancing aspects of energy management (and electricity management in

particular).

17
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2.1 Unit Commitment

�e Unit Commitment Problem (UCP) gives a mathematical formulation of an

optimization problem that is related to energy generation. For literature overviews

of the UCP we refer to [102, 115]. In the UCP, deterministic or stochastic energy

demand has to be supplied by a number of generators. �e UCP determines the

commitment of speci�c generators during certain time windows (i.e. a binary

decision whether generators are used to supply (part of) the demand or not) and

determines the generation level of the committed generators in these time windows.

To our knowledge the term Unit Commitment was �rst treated in [77].

In this section we �rst describe the original Unit Commitment Problem, meant

to be used by a single generation company that has several generators (power plants)

available. �en we describe the developments in the �eld of Unit Commitment that

coincide with the emergence of the Smart Grid.

2.1.1 traditional unit commitment

Originally, the UCP is seen as a decision support tool for a generation company.

Such a generation company o�en used to be also the distribution system operator

(DSO) and the only electricity retailer in a certain area; i.e. the generation company

used to be a monopolist. �e main task of this generation company simply is

to supply all demand in the area. �e complete demand of the area is relatively

inelastic; the consuming behaviour of the area does not depend much on the

electricity price (at least not in the price range that the electricity retailer is allowed

to ask). Since revenues are not subject to much uncertainty (in the monopolistic

case), the objective for the generation company in this case is to minimize costs

that are associated with generation. An important aspect of this task is to predict

the demand. High quality predictions are useful for the generation company; the

more accurate the prediction is, the less adjustments are needed for the production

that is planned for this prediction, and the better the cost-bene�t optimization of

the generation company can be planned by solving the Unit Commitment Problem.

�e Unit Commitment Problem (UCP) minimizes total costs (or maximizes total

revenue/pro�t) for a set of generators, that are subject to a set of constraints on

the generation. Main features of the UCP are unit commitment (the decision

to actively participate in the production process of a certain time interval) and

economic dispatch of committed units [28] (the decision to produce at a speci�c

generation level in a certain time interval), whereby a large amount of possible

additional requirements have to be taken into account. Several of these additional

requirements deal with time: power plants have startup costs and ramp rates for

example. Startup costs aim at using the same committed units for subsequent time

intervals (long run periods are in general good for the energy e�ciency of power

plants). Ramp rates indicate the maximum increase/decrease of the generation level

of power plants, re�ecting that a generator that is producing at full capacity cannot

always be stopped within an hour. Similarly, the full capacity cannot be immediately

reached, if the generator is currently not committed.
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We demonstrate the classical UCP by giving an example. �is example con-

siders a generation company as depicted in Figure 2.1. Figure 2.1a shows that this

power plant 1 power plant 2 power plant 3

power plant 4 power plant 5

(a) �e portfolio of a generation com-

pany, consisting of generators with di�er-

ent production capacities

time

re
q
u
ir
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d
p
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d
u
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(b) Required electricity production for

the generation company over a certain

time horizon

power plant 1 power plant 2 power plant 3

power plant 4 power plant 5

(c) Unit commitment of the portfolio at

a certain moment in time

power plant 1 power plant 2 power plant 3

power plant 4 power plant 5

(d) Economic dispatch of the committed

generators at a certain moment in time

Figure 2.1: Classical Unit Commitment for a generation company

generation company consists of 5 di�erent power plants with a di�erent production

capacity, indicated by the height of the rectangle next to each power plant. In Figure

2.1b the (predicted) demand of the area is depicted, varying over a certain time

horizon. Of course, in the real world the actual demand is a continuous function.

However, in the UCP and in the energy planning problems that are discussed in this

thesis, the demand is aggregated over (hourly or even smaller) time intervals. In

the context of the UCP this means that the planned production for the generation

companies portfolio is a rough sketch for the actual production. However, note

that the realtime adjustments that are needed, are relatively close to the aggregated

demand and in general do not lead to severe problems for the power plants. �e

Unit Commitment Problem has to match the demand in each time interval by

committing power plants (or generators or units) (see Figure 2.1c) and determining

the generation level for committed units (see Figure 2.1d). �e �rst task is called

unit commitment and the second task economic dispatch. In the example these
two sub�gures show the unit commitment and the economic dispatch for the time

interval that is coloured white in Figure 2.1b: we choose to commit power plant 1, 2

and 5, and produce the required 300 MWh as in Table 2.1.

Rather than looking at the numbers of the example, it is important to distinguish

the important parameters and constraints in the Unit Commitment Problem that
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demand power plant

1 2 3 4 5

unit commitment - 1 1 0 0 1

production/consumption (MWh) 300 150 100 0 0 50

Table 2.1: Unit Commitment for a certain time interval

de�ne the eventual commitment and dispatch. In the following, we list them, prior-

itizing on the most common ones in a descriptive way. A mathematical formulation

of the UCP can be found in Chapter 6.

Cost minimization

One of the most common objectives is cost minimization. �e operational costs

of a power plant consist of fuel costs, maintenance costs and startup/shutdown

costs. Fuel costs are o�en modelled by a quadratic function that depends on the

generation level, since the usage of fuel increases more than linearly in the increase

of the generation level. Maintenance costs are modelled by a linear function of the

generation level, and are usually signi�cantly lower than fuel costs. Startup costs

and shutdown costs can be signi�cant in the sense that they do have an in�uence

on the unit commitment decisions in time.

Revenue/pro�t maximization

As we will see in a later subsection, pro�t or revenue maximization becomes a more

attractive objective in a liberalized electricity market. In this case, operational costs

are carefully considered against market clearing prices and cleared quantities; i.e,

due to competition, the demand for a single generation company becomes more

elastic in a liberalized market. �is gives an incentive to shi� the focus towards

pro�t maximization.

Demand matching

�e most clear constraint deals with the production requirements for the set of

generators. In the UCP the sum of the production should always exceed the demand.

Overproduction can be dumped, in case this is necessary.

Reserve matching

Next to matching the demand, it is an additional requirement to have a so-called

spinning reserve. �is spinning reserve represents the unused part of the capacity of

already committed generators, and, as such, provides possible additional generation

capacity that can be dispatched directly, in case of unexpected deviations in demand.
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Minimum runtime/o ime constraints

Only committed units can (and should) produce electricity. Once a unit is commit-

ted it is desired to let it run for a period of time that is usually longer than a single

time interval. �e startup costs may be e�ective in deriving this property. In some

cases, hard constraints are used to require that a unit stays committed for a given

number of intervals.

Ramp rates

Generators are technically limited in the speed at which they can adjust their

generation level. Ramp rates de�ne the maximum increase and maximum decrease

of the generation level in a single time interval.

Capacity limitations

Of course each generator has a given production capacity; it is obvious that its

generation level cannot exceed this capacity.

Crew scheduling

Some (long-term) variants of the UCP take crew scheduling into account. �is deals

with assigning employees to power plants, with a focus on maintenance scheduling

and including operational crew constraints.

Network limitations

�e electricity transmission and distribution system can also be taken into account.

Usually it is assumed that the grid capacity exceeds the available production capacity,

but thismay not be the case. For example, the layout design of the network in relation

to the source of distributed demand can introduce capacity problems and even

blackouts [34]. In this case network constraints should be added. Especially the

interconnection between di�erent areas (di�erent markets) can be a bottleneck.

2.1.2 recent developments in unit commitment

A�er the liberalization of the electricity market, generation companies and electric-

ity retailers were strictly separated. �is leads to changes in the Unit Commitment

Problem. A summary of recent developments can be found in [66]. Whereas the

generation company can be regarded as the only player in the UCP, now the emer-

gence of other players in a competitive market leads to systematic changes that

could be re�ected in the UCP in di�erent ways. Considering themarket mechanism,

the competitive auction system directly in�uences the required production of a

single generation company and, thereby, its primary constraints. Also, ways of

acting on an electricity market can be merged with the classic UCP. �e in�uence

of competitive auction mechanisms is also expressed by an increasing demand

uncertainty, which leads to the development of stochastic problem formulations, in
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which several stochastic scenarios are considered. Finally the decentralization of

the electricity supply chain leads to new types and sizes of generators, and therefore

to an increasing size of the problem instances.

Unit Commitment and electricity markets

�e implementation of electricity markets leads to more competition and thus to

changes in the way energy planning problems in general are treated. �is in�uence

cannot only be noticed in the short term UCP, but also long term market e�ects

are seen. �e work in [73] considers power generation expansion planning, which

in essence is the problem of locating new power plants for a generation company.

�e shi� from having a monopoly to competition leads to a change from inelastic

demand to elastic demand (also on the long term), since a generator has an increased

risk of being out-competed in a couple of years. �erefore it is much more crucial

to take location, primary energy source and future expectations into account, when

planning new power plants.

On the short term, generation companies are pushed towards an active role in

o�ering market bids, consisting of price and quantity pairs. �e production is not

matched to inelastic demand but to o�ered amounts on a short term (day ahead)

market, as in [41, 42, 119, 133]. Varying fuel costs are also taken into account in [119].

�e interconnection of di�erent regional markets is also studied [101]. In this case

export and import between four di�erent areas are optimized in a UCP framework.

Stochastic Unit Commitment

�ere have always been inaccuracies in the prediction of demand (and thus the pre-

diction of the required generation) in the UCP. �ese inaccuracies however, could

be relatively easily ‘repaired’ in realtime, due to the relation between the amount of

demand uncertainty and the available �exibility in the generation capacity.

Now all generating companies have to act on (long, medium or short term)

electricity markets. �is acting on electricity markets introduces price uncertainty.

Besides that, in the change towards Smart Grids the use of distributed generation

shows that the generation capacity of many generators has decreased. �is results in

a stronger impact of demand uncertainty, which cannot easily be repaired anymore

by the committed generators, and leads to the introduction of stochastic Unit

Commitment Problems.

�e stochasticity of the demand (and of market prices) can be considered in two

ways. In [66] probabilistic constraints are used to model demand uncertainty. In

most related work [40, 41, 42, 60, 105, 116, 119] scenario trees are developed and the

expected pro�t, revenue or costs are optimized. Scenario trees consist of possible

variations on predicted outcomes in a certain time horizon. Each scenario has a

certain probability of occurrence, such that the expected value of the problem can

be calculated.
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paper type of generation total capacity (MW) # generators # intervals stochastic

[40] hydro/thermal 13000 32 168 yes

[116] hydro/thermal - 6 12 yes

[42] coal/hydro/other 3834 20 168 yes

[60] hydro/thermal 13000 32 168 yes

[105] hydro - 8 48 yes

[119] thermal - 33 168 yes

[101] thermal 12020 104 24 no

[38] thermal/microCHP 20 5010 48 no

Table 2.2: Problem instances of related work

Decentralized Unit Commitment

�edecentralization of the electricity supply chain gives room to study smaller-scale

generation. However, most work in the UCP still focuses on relatively large-scale

generation. Table 2.2 gives details on the problem instances that are studied in a

selection of papers. �e average generation capacity per generator remains in the

order of hundreds of MW, which is still relatively large. �e �nal row in the table

shows our contribution, which focuses on distributed low-scale generation with

large numbers of generators. �is type of problem brings along a focus shi� towards

feasibility. By feasibility we mean the ability to �nd a solution (not necessarily the

optimal solution) that satis�es all constraints. Feasibility is extensively discussed in

Chapter 3.

2.2 A Virtual Power Plant of microCHP appliances

In this section we discuss a Virtual Power Plant, consisting of microCHP appliances

(as indicated in the previous chapter). From an economic and policy point of view,

there are some concerns regarding the large scale introduction ofmicroCHP [62, 68].

�e policy analysis of [62] describes possible con�icts between policy instruments

to support microCHP and other energy e�ciency measures (i.e building insula-

tion). �ey conclude that simultaneous support for energy e�ciency measures (e.g.

insulation) andmicroCHP can be justi�ed, but care must be taken to ensure that the

heat-to-power ratio and capacity of the micro-CHP system are appropriate for the

expected thermal demand of the target dwelling. �e study of [68] concludes that

individual households lack incentives to switch from conventional boiler systems

to microCHP; however, from the viewpoint of a centrally organised entity, there

is large potential to operate a Virtual Power Plant. We propose a business case in

which such a central entity has control over the individual generators.

2.2.1 existing approaches

�ere have been di�erent studies to the introduction of a Virtual Power Plant. �e

dissertation of [114] shows the concept and the controllability of a VPP from an

electrical point of view. �e minimal power output in this case is on a miniscale

(tens/hundreds of kW). �e economic possibilities of a VPP with microCHP sys-

tems are studied by [68, 112]. In the work of [112] the di�erence between the virtual
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generation capacity in summer and winter periods leads to the conclusion that a

VPP cannot replace a conventional power plant in the sense of supplying continuous

baseload, but is a mere competitive entity during the daily dispatch of electricity.

Short term economics of VPPs are studied in [82]; the study concludes that genera-

tors may di�er in the form they bid within a VPP (either true to marginal costs or

auction oriented/strategic bidding). �e combination of both forms is crucial for a

good operation of a VPP.

�e term Virtual Power Plant is not only used in the literature for a coopera-

tion of small-sized electricity generators, but also for an arti�cial �nancial option

to increase the performance of the functioning of the electricity market. In this

description of a Virtual Power Plant, a VPP is de�ned as a tradeable option, which

gives the right to produce electricity at certain time periods [53]. In this case, a

Virtual Power Plant is an auctioned right to generate electricity, that not necessarily

needs to be exercised when the speci�ed time period arrives. We want to stress that

we do not propose our VPP as such an option, but we want to explicitly incorporate

the duty to commit to the generation levels that are auctioned for our VPP.

In the real world, several examples of VPPs exist. In Germany, [87] is an example

of a VPP in practice, that uses Volkswagen motors to generate 19 kW electric and

31 kW thermal power. �e company Lichtblick pays rent for the used space of the

installation, gives an environmental bonus for the production of electricity in the

form of a compensation for the price that the household has to pay for the heat

generation, and pays most of the installation costs. In return they have the right to

operate the appliance, between the comfort limits set by the additional heat bu�er.

In �e Netherlands, the concept of the Multi Agent System oriented PowerMatcher

is tested in a �eld trial consisting of 9 microCHPs [67].

2.2.2 business case

�e VPP in our business case consists of microCHP appliances with a �xed output

of 1 kW electric power. All generated electricity is auctioned on a day ahead market.

�is means that the total generated electricity of all microCHPs is sold and not only

the totalmeasured export (i.e. the generationminus the electricity immediately used

in home). To di�erentiate between the exported electricity and the total generated

electricity, measuring equipment needs to be installed at each microCHP appliance

in each household.

We propose an ownership construction as in the Lichtblick case, meaning that

the operational control lies with a centralized entity, in return for a compensation

for installation and possessed space. �e costs for heating remain a household

responsibility, minus an annual compensation for the contribution to the environ-

ment via high e�cient electricity generation. �e fact that such a construction

already is used in practice, shows that households are willing to accept this form

of loss of control, as long as this has some �nancial advantages and as long as this

does not lead to inconveniences in heat supply. A consequence of this setting is

that the operational costs, related to market participation, from the viewpoint of

the centralized owner are zero.
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Note that our VPP is not intented to be used as balancing dispatch power or

ancillary services (e.g. for congestion management), but only to act on a day ahead

electricity market. �e maximum capacity of the VPP results from the predicted

heat demand of all households and is close to the minimum amount of generation

that is needed for supplying this heat demand. �e small di�erence results from the

use of the heat bu�er. In general this di�erence is too small to act as an ancillary

service; if no service is needed, we still need to produce heat. Although most

microCHP appliances have an additional burner that only produces heat, in general

it is not desired to use that burner, since this results in loss of energy e�ciency and

torments the basic principle of the introduction of microCHP.

Focus shi� in our work related to UCP

Recent contributions to the Unit Commitment Problem show a shi� towardsmarket

inclusion and stochastic in�uences. We concentrate on large scale decentralization

of electricity generation with a certain �exibility in the timing of the individual

operation of generators, but with �xed generation levels when the binary decision

to produce or not is made.

In the Unit Commitment Problem for large sized generators the transition to

realtime control allows for relatively easy up- and downgrading of the generation

levels of the committed power plants. For this reason the optimization objective can

focus on the economic dispatch and can take stochastic variations on the demand

into account. In our problem scenario trees are not easily implemented, since the

operation of the VPP depends on the individual heat demand of households. �is

would give an exponential scenario space in the number of appliances, where we

have already feasibility problems when solving a single scenario as explained in

Chapter 3. Considering this we focus on the deterministic variant of the prob-

lem, and repair demand uncertainty in a realtime step by applying the TRIANA

approach.

2.3 A three step control methodology for decentralized energy

management

To make a real world large-scale implementation of a Smart Grid possible, this

implementation needs to be controllable andmanageable. TRIANA is such a control

methodology that focuses on decentralized energy systems and is developed at the

University of Twente [29, 94]. �is methodology consists of three steps (see Figure

2.2), which are taken in order to assure the ability to control di�erent objectives for

di�erent stakeholders in the Smart Grid. �ese steps are:

• prediction;

• planning;

• realtime control.
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PREDICTION

PLANNING

REALTIME

CONTROL

Figure 2.2: �e three step approach

A simulator is built to evaluate the consequences of the shi� towards distributed

generation, distributed storage and demand side load management [30, 95]. �e

basic energy �ow model that underlies this simulator is presented in Section 2.4.

�is model is organized in such a way, that balance of energy �ows is the central

requirement. Before presenting the energy model, in this section we give a short

overview of the three steps of the control methodology. We start with the potential

of the management system.

2.3.1 management possibilities

�ere are several optimization objectives within a domestic Smart Grid. On a local

level, the energy �ow within a house can be optimized towards lowering import

peaks or working towards minimizing the transport of energy (using as much

electricity locally, when it is locally produced). Also price driven objectives can be

incorporated, meaning that demand side management is applied to schedule local

controllable consumption goods towards variable electricity pricing schemes. For

example, controllable washing machines could be scheduled at periods when the

electricity price is low and electrical cars could be controlled to be charged during

cheap time intervals.

On a global level, houses can cooperate in a Virtual Power Plant, as is depicted

in this thesis. In this case the local (in-home) control is driven by global objectives.

When working with global objectives, the local household has minimum comfort

requirements that may not be violated. For example, the operation of a microCHP

in combination with a heat bu�er may not lead to a situation in which heat demand

cannot be delivered. Optimization objectives on a global level may be to peak

shave the total electrical demand that a neighbourhood or village draws from the

distribution network. Peak shaving consists of minimizing the maximum load

that occurs in a complete time horizon. In the case of a neighbourhood that is

equipped with heat pumps, which draw a large amount of electrical power to heat
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the household, or in case of a neighbourhood with a lot of electrical cars, that need

to be charged when they are at home, this might be a relevant objective from the

viewpoint of the distribution network. When a management system can be used to

assure that the current network capacity su�ces, large investments in additional

capacity can be prevented.

Next to taking into account local and global objectives it is important to propose

a methodology that can cope with a scalable infrastructure. Since the domestic

Smart Grid needs control on di�erent levels, varying from a household appliance

level up to power plants, a real world implementation may have to consider millions

of elements that need to be controlled. �e TRIANA methodology uses a hierar-

chical control structure (see Figure 6.1), that coincides with the natural leveled

organization of the electricity grid. Note that in the �gure, leafs correspond to

level 1: large power plants

level 2: small power plants/villages

level 3: houses

level 4: appliances

Figure 2.3: �e hierarchical structure of the domestic Smart Grid

physical entities, whereas internal nodes represent aggregation of information from

(a) lower level(s).

At the lowest level we consider household appliances. We further distinguish

between local control in houses (the smart meter would be an excellent device

to install such a management system), aggregated control entities (e.g. located

at transformers) in neighbourhoods/villages and nationwide coordination at the

highest level in the structure. �is hierarchical division is necessary, especially in the

planning step of the methodology, to derive feasible results of good quality within

reasonable computational times, when considering scalability. Communication

between di�erent levels in the hierarchical structure should be limited. From

this viewpoint and from a privacy point of view, it is helpful that only aggregated

information is communicated.

�e TRIANA methodology is modelled in a generic way, which is explained

in more detail in the section that treats the energy �ow model. �e choice for this

generic model setup is made deliberately, due to the enormous amount of emerging

(domestic) technologies. Based on the generic model, it is now relatively easy to
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implement di�erent scenarios using various generation, storage and demand side

management techniques.

�is setup of the methodology o�ers many possibilities for applying energy

supply chain management. We mainly focus on the case of a Virtual Power Plant

consisting of microCHP appliances, but we do also consider combined optimization

of distributed generation, distributed storage and demand side management.

Prediction

To be able to act as a Virtual Power Plant on a day ahead electricity market or,

more generally, to be able to take future parameters into account, predictions are

necessary. Since the operation of di�erent appliances takes place on a household

level, we need predictions on this household level too. For our speci�c Virtual

Power Plant we are interested in two types of prediction. For a microCHP appliance

it is necessary to have information on the heat usage in a household; the work in

[29] gives an overview of the prediction of heat demand in local households. Besides

these heat demand predictions, an estimation of electricity prices is also necessary,

to model the market behaviour.

If heat demand predictions are done locally, this leads to a scalable prediction

system, where each household individually predicts heat demand for a complete day

without the necessity to communicate with each other. �is prediction results in a

certain degree of scheduling freedom for a microCHP, when this microCHP is com-

binedwith a heat bu�er. �e scheduling freedom represents the ability to operate the

microCHP (or in general any other generator, bu�er or consuming appliance) with

a certain �exibility, while still meeting the consumers comfort requirements (in this

case respecting the heat demand at all time intervals, by maintaining the heat bu�er

within its operational heat levels). One possible way to perform the heat demand

prediction of a household is to use a neural network (see [29]). Neural networks

are generally used whenever a clear causal mapping between input parameters and

behaviour is unknown. �is neural network consists of a set of input parameters,

which in the case of predicting heat demand may be: the heat demand data of one

up to several days before the regarded day, predicted windspeed information for

the regarded day and the day before, and outside temperature information for the

regarded day and the day before. �e challenge for a neural network now is to select

the right input parameters and to �nd the weighed combination of these input

parameters, such that the prediction becomes most accurate. An important result

from [29] is that continuous relearning in a sliding window approach showed good

results. �is means that a short term history of data (only a couple of weeks) is used

each day to update the combination of input parameters, to adjust the prediction

to time varying behaviour. �e heat demand of the previous day and the demand

of exactly a week before showed to be also of importance in choosing the right

parameters. A Simulated Annealing heuristic is used to search on the set of possible

input parameters to �nd a good combination of input parameters. More details on

the quality of the heat demand prediction are given in Chapter 4.
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Market clearing prices on the day ahead market may be predicted by using a

short term history of market clearing prices. [17] presents price forecasting using a

combination of neural networks, evolutionary algorithms and mutual information

techniques. �e work in [44] shows price forecasting of a day ahead market; they

conclude that time series techniques outperform neural networks and wavelet-

transform techniques. Important aspects are that the mean and variance of the

market clearing price are non-constant and have a relative high volatility. Next

to predicting the market clearing price an indication (prediction) of the variation

of this price is therefore also important, when we want to act on an electricity

market. In a short term history seasonal in�uences on the development of the

market clearing price are marginal. Based on a prediction of the mean and variance

of the market clearing price, estimates of market bids can be calculated. More

information regarding this subject is given in Chapter 5.

Planning

Predictions are necessary to derive the operational possibilities of distributed energy

management. Based on this operational �exibility a planning can be made, which is

the subject of this thesis. �e necessity of having a planning in the case of a Virtual

Power Plant is evident. Without a planning, the controlling entity of the VPP lacks

information on the bids that need to bemade on an electricity market; the controller

does not know whether it is possible to o�er a certain amount of electricity in a

certain time interval.

In other energy related optimization problems, the planning step can also be a

helpful tool to cooperate with a realtime control scheme. Realtime control without

any knowledge about the future can lead to disastrous failures in meeting certain

requirements or objectives. For example, realtime control of charging a group of

electrical cars, solely based on electricity price signals, can lead to interruptions

in the power supply, when all cars start charging at the same moment in time,

which probably exceeds the available capacity of the distribution network. In our

TRIANA methodology, we choose to implement knowledge about the future via a

combination of predicting and planning the operational freedom of appliances in

the domestic Smart Grid.

Realtime control

As a �nal step in the management methodology, we apply realtime control. Due to

uncertainty in predicted parameters, it is in general not always possible to exactly

follow the planned operation. To overcome this problem, realtime control tries to

optimize the energy management problem in an online fashion [94].

In this realtime control step actual decisions are taken for all involved elements

in the problem that is under consideration. For theVPP case, thismeans that the real

decision to generate electricity is taken in this step, while focusing on matching the

planned operation, and simultaneously respecting the heat demand requirements

of each household. In such realtime decision making, the balance in the energy
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�ow model should always be respected. �e realtime control is based on generic

cost functions, that are related to the decision freedom for each of the controllable

entities in the energy �ow model. �ese cost functions and their in�uence on

realtime control in the VPP case are discussed in Chapter 4.

�e realtime control mechanism also has the possibility to take some future

time intervals into account, while making a decision for the current time interval.

In this Model Predictive Control (Rolling Horizon) way, the realtime control step

can anticipate on possible future obstacles.

2.4 Energy flow model

�e TRIANA methodology is an energy management approach that o�ers a frame-

work to test and simulate di�erent control mechanisms for distributed generation,

distributed storage and demand side load management, but it is for example also

capable of testing the economic dispatch of large-scale generation in power plants.

�e main advantage of the underlying model of the simulator, that enables the

user to de�ne such a wide range of energy related scenarios, is a generic way of

preserving energy balance in a given time interval. �is so-called energy �owmodel,

extensively discussed in [94], serves as the basis for the di�erent �ows of energy in

the planning and realtime control step of the TRIANA method. It also provides a

lot of insight in the architecture of the Smart Grid.

In this section we therefore pay attention to modelling the energy infrastructure

as a �ow network. First we present the basic elements of the model, the correspond-

ing balancing constraints and the decision freedom in the model. �en we show the

resulting energy �ow model for the example of the generation company in Section

2.1 and we conclude with a general model of an extended example of a Smart Grid.

Note that the energy �owmodel depicts the situation in an energy infrastructure

for a certain (short) time interval. We use the term energy infrastructure, since

we distinguish between di�erent types of energy (e.g. gas, heat, electricity). A

simulation scenario consists of a series of subsequent energy �ow models with

dependencies between elements of the current time interval and the elements of the

next time interval. �ese elements are the usual distributed energy management

elements, e.g. elements for production, consumption, storage, measuring and

communication. In each �ow model balance has to be found, by using the decision

freedom for the di�erent elements. Elements are classi�ed by di�erent types. We

divide the elements E into consuming, exchanging, bu�ering, converting and source
elements: E = Econs ∪ Eex ∪ Ebu f ∪ Econv ∪ Esource . �ese elements, together with
a special set of pools P, form the nodes in the energy �ow graph G = (V ,A), i.e.
V = E∪P (E∩P = ∅). �e set of directed edges A of the graph consists of two types
of arcs: A = AEP ∪ APE . Hereby, each directed edge (arc) ae p ∈ AEP denotes an
energy �ow from a node e ∈ E to a node p ∈ P and an arc ape ∈ APE denotes a �ow
between a node p ∈ P and a node e ∈ E. Note that in general G is a sparse graph.
�e directed edges that occur in the model for the di�erent elements are described

below. Since we speak about energy �ows inWh, �ows are always nonnegative. As a
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consequence of the chosen structure of the edge set A, di�erent elements e1 , e2 ∈ E
are never directly connected to each other nor are di�erent pools p1 , p2 ∈ P; energy
is always transferred from elements to pools of a speci�c energy type and vice

versa. Pools are a means for transportation and keeping track of energy �ows of a

speci�c energy type (e.g. heat, electricity or gas); they o�er an interconnection of

several elements for a certain type of energy. A nice property of the simulator is

that the energy type of an element is always type checked with the pool it wants to

be connected too; in the formulation we omit these type checks.

A consuming element consumes energy of certain energy types, which means

that it allows for multiple �ows from di�erent pools to the element. �e decision to

consume is either �xed for a normal non-controllable consumption appliance, or

has some freedom for intelligent controllable appliances. Consuming elements are

regarded as sinks in the �ow network.

Exchanging elements are mainly used to connect di�erent operational levels in

the infrastructure and consist of two bidirectional arcs, to model possible bidirec-

tional �ows between the two di�erent ‘worlds’ that are separated by an exchanging

element. Transformers are modelled by using exchanging elements, as well as gas

and electricity connections of a household. Exchanging elements form good refer-

ence points for measuring and controlling net �ows on strategic locations in the

infrastructure. �e �ow model demands that the �ow of the incoming arcs minus

the �ow of the leaving arcs of an exchanging element is zero.

Converting elements can have multiple incoming arcs and multiple leaving

arcs. �ese elements represent di�erent types of generators, that consume possibly

di�erent types of (primary) energy and convert the corresponding energy to other

forms of energy. Loss is also considered as a form of energy, and is eventually

consumed by loss consuming elements. In this way, e�ciency calculations can be

easily executed, and it allows the model to again demand that the sum of incoming

energy �ows minus the sum of leaving energy �ows of a converting element is

zero. In general the decision freedom of a converting element is determined by

the di�erent ways that the converter can be operated. Based on these (possibly)

di�erent operational modes, the relations between incoming and leaving energy

�ows are �xed by the model, where �exibility in the energy e�ciency of di�erent

operational modes is included.

Bu�ering elements represent energy bu�ers, and are the only type that allows

an internal state. �is state keeps track of the bu�er level, which determines the

operational freedom of the bu�er. A bu�ering element can have multiple incoming

arcs and multiple leaving arcs. Again, balance is preserved by requiring that the

sum of incoming arcs minus the sum of leaving arcs minus the increase in state

(which may also be negative) is zero. �e decision freedom of a bu�ering element

can be found in the possible range in which the internal state can be altered.

�e di�erent elements are coupled to each other via pools. Each pool has a

corresponding energy type (e.g. gas, heat, electricity) and may only have incoming

arcs from and leaving arcs to elements that have a leaving/incoming energy �ow of

the same type. Within a pool balance is required.

Source elements only allow �ows from this source to a pool and are the primary
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form of energy that enter in the model. Since balance is preserved in the complete

model, the total energy �ow from the sources into the model should equal the total

consumption plus the total increase/decrease in the bu�ering states.

In a simulation scenario, the decision freedom in a certain time interval is

determined by the decisions of the precious intervals and possibly the internal

state of the elements. For each interval, the space of possible decisions is searched

to optimize for some objectives, while preserving the balancing requirements in

the graph. �e (possibly con�icting) objectives of realtime control and the use of

generic cost functions for decision making are discussed in Chapter 4.

Example of a generation company
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Figure 2.4: An energy �ow model of the example of the generation company

In Figure 2.4 the infrastructure of Section 2.1 is given in a �ow graph, by using

di�erent types of nodes to stress the di�erences between generation, transportation

and consumption. Two di�erent types of energy sources are available: power plant 1

and 2 run on coal, and power plant 3, 4 and 5 are gas-�red. �ey convert coal or gas

into electricity �ows. �e power plants are connected to the high voltage grid, which

is connected to the medium voltage grid, via a transformer. �e demand of the

example is split into di�erent demands for 4 distribution areas, that are connected

to this medium voltage grid. �e �ow graph shows that a balance occurs at every

node in the graph, with the exclusion of source and consuming elements.
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Figure 2.5: A model of the smart grid infrastructure
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Example of a Smart Grid infrastructure

Figure 2.5 shows an example of a Smart Grid infrastructure. As in Figure 2.4,

directed edges show the electricity �ow in the network. Some edges are bidirectional,

indicating that a �ow in both ways is possible. In the graph such a bidirectional �ow

is represented by two opposite arcs with nonnegative �ow. �e large power plants

are connected to the high voltage grid; smaller generation (e.g. windmill/solar

panel parks, biogas installations, etcetera) is connected to the medium voltage grid.

Note that this smaller generation is not directly coupled to the medium voltage

grid, but via an additional electricity node, which is connected to an exchanging

node, called ‘new generation’. �is ‘exchanger’ expresses the introduction of a new,

lower level in the model of the smart grid and functions as a separator between

a possible optimization problem on the higher level and the local commitment

problem on the lower level (e.g. the smaller generation). �e exchanger can be seen

as a communication means between higher and lower order planning problems.

�is division into levels is further explained in Chapter 6.

Compared to the model of Figure 2.4, distribution areas like villages are now

modelled inmore detail. In the previousmodel it su�ced to consider the connection

of a village to the medium voltage grid, since only aggregated demand is taken

into account. In the extended model a village is connected to the lower voltage

grid and an exchanger is used to specify a lower level. In this lower level, a next

level is introduced for the houses to model their own generation/consumption

characteristics. Within the model (e.g. within the houses) di�erent types of energy

(i.e. gas and heat) are combined. �is is one of the strengths of the extended model.

In the model presented in Figure 2.5 we include the modeling of a microCHP. It is

convenient to use a heat bu�er next to this microCHP to guarantee the heat supply

in the house and to partially decouple heat consumption from the generation of

heat (and electricity). In the model, gas import information is stored in the gas

exchanger. �e energy e�ciency of generation can be modeled by adding energy

losses. In the example, the loss �ow of the microCHP has a �xed ratio to the heat

and electricity generation; the loss �ow of the heat bu�er is determined by the

state of the bu�er. In a similar way, the e�ciency of each type of generation can be

modeled. However, for simplicity this is le� out of Figure 2.5.

2.5 Conclusion

�is chapter gives additional background on the focus of this thesis. We give an

overview of the Unit Commitment Problem as a basic reference point of the type of

electricity/energy planning problems that we study. Next, the concept of Virtual

Power Plants is further explained and a business case is given, which shows the type

of Virtual Power Plant that we consider. �e planning of the generation output of

this Virtual Power Plant is part of a 3-step control methodology for decentralized

energy management, called TRIANA. An important aspect of TRIANA is an energy

�ow model, which focuses on the balance requirement of electricity networks.



CHAPTER3
The microCHP planning problem

Abstract – �is chapter treats the microCHP planning problem, which models
the planned operation of a Virtual Power Plant consisting of microCHP appliances
that are installed with additional heat bu�ers. Since it is a new type of planning
problems in the electricity supply chain, it is extensively modelled and studied for its
complexity. �e microCHP planning problem is proven to beNP-complete in the
strong sense. Based on this complexity result and on initial computational results
for an Integer Linear Programming formulation as well as a dynamic programming
formulation, heuristics are developed to solve the problem. A �rst heuristic is a
local search method that is based on the dynamic programming formulation for
an individual house. �is heuristic restricts the search for the optimal solution to
general moves in the space domain (i.e. the set of di�erent microCHP appliances). A
second heuristic stems from approximate dynamic programming and concentrates
more on time dependencies. A third heuristic uses a column generation technique,
where the planned operation of individual microCHPs is represented by a column.
�is heuristic gives the most promising results for implementation in a real world
setting.

In this chapter we focus on planning the operation of a Virtual Power Plant that

completely consists of microCHPs, by de�ning the microCHP planning problem.

Within the mathematical formulation we already take into account the connection

between the microCHP planning problem and the research questions that are

answered in the following chapters. �is connection is mainly expressed by the

bounds on the total electricity generation of the Virtual Power Plant.

�e focus of this chapter is on modelling and solving the planning problem for

a large number of microCHPs. �e microCHP planning problem is treated as an

Parts of this chapter have been published in [MB:5] , [MB:8] , [MB:6] , [MB:9] , [MB:7] , [MB:4] ,

[MB:21] and [MB:20] .
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example of a di�cult planning problem in the �eld of distributed energy generation,

due to its strong dependency in both time and space. Similar algorithms can be

derived for other types of generators and heating systems, e.g. gas turbines, heat

pumps, etcetera. It serves as a standalone planning problem for a Virtual Power

Plant and as an important starting point to treat combined planning problems in

the changing energy supply chain, as explained in Chapter 6. In Section 3.1 the

general problem of planning a group of microCHPs is introduced. Before we show

di�erent methods to solve the microCHP planning problem, we �rst draw some

attention to the complexity of the problem in Section 3.2. We formulate two types of

optimization problems for the microCHP-based Virtual Power Plant. In Section 3.3

an Integer Linear Programming formulation of the microCHP planning problem

is given and in Section 3.4 a dynamic programming formulation, which may be

used to solve small instances to optimality. �ese �rst results, in combination with

the theoretical complexity of the microCHP planning problem, show the urge to

develop e�cient methods, i.e. methods that �nd solutions in reasonable time and

which are close enough to the (possibly unknown) optimal solution. Such methods

are presented in Sections 3.5-3.7. Finally a conclusion is drawn in Section 3.8.

3.1 Problem formulation

In this section we describe the requirements for a group of microCHPs to operate

correctly. Next to these requirements, several optimization objectives are indicated

that could be of interest for an operator or planner of this group of microCHPs.

Together these requirements and optimization objectives form input to the mathe-

matical planning problem for a group of microCHPs. �e term planning re�ects
to the series of decisions to let (a/multiple) microCHP(s) run at sequential time

periods or not. �e formal de�nition of these planning problems is postponed to

Section 3.2, where a general notion of complexity is explained and the complexity

of the microCHP planning problem in particular is treated.

3.1.1 microchp as an electricity producer

Combined Heat and Power appliances on a domestic scale (microCHP appliances)

consume natural gas and produce both heat and electricity at a certain heat to

electricity rate. �e electrical output is in the order of kiloWatts (kW), which means

that it is suitable for use on a household scale.

MicroCHP is considered as one of the possibilities to implement the decentral-

ization of energy production (see Chapter 1 and 2). It has a relatively high energy

e�ciency compared to that of large(r) power plants, which shows the main advan-

tage of this type of distributed generation. �e important bene�t in the energy

e�ciency origins from the more e�cient use of the heat, since produced heat in a

power plant cannot be transported/used as e�ciently (if it is not lost already in the

production process) as on domestic scale. However, this means that the principle

focus of CombinedHeat and Power production on a domestic scale should be on the

e�cient storage/consumption of heat in order not to lose this advantage. �erefore,
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microCHP mainly can be seen as a replacement for current boiler systems, and

secondly as a domestic electricity generator.

�ere are several possible technical realizations of a microCHP, such as Stirling

engines [43], rankine cycle generators [109], reciprocating engines [117] and fuel

cells [5], where Stirling engines are nearest to full market exposure.

3.1.2 requirements

�e requirements for the operation of a group of microCHPs can be divided into

three sets: appliance speci�c characteristics, operational (time dependent) require-

ments for eachmicroCHP and cooperational requirements on groups ofmicroCHPs.

For a list of used variables and parameters we refer to the list of symbols.

Appliance speci�c characteristics

�e microCHP generation characteristics are given by a set of parameters that

describe the behaviour of themicroCHP, once its way of operation has been decided.

To be used in a domestic setting the order of magnitude of the production of heat

and electricity by the microCHP should be such that the operation within the

house is allowed (according to local grid policy) and such that the appliance is

able to ful�ll the heat demand. �is means that local heat demand can be supplied

completely by the microCHP (in combination with a heat bu�er) and that the

electricity production does not exceed the maximum output that may be delivered

back to the electricity grid. �is supply is namely bounded by regulations set by the

national government. �is combination of heat supply requirements and electricity

supply limitations results in a limited freedom for technology development. By

this we mean that the ratio between the heat and electricity generation of the

di�erent microCHP technologies is more or less decided by environmental factors.

Naturally this ratio is also in�uenced by the technological possibilities itself. From

the viewpoint of the planner, we can assume that the electricity to heat ratio is �xed

and known for a certain generation technology and can be used as given input for

the planning problem.

Figure 3.1 shows the electricity output pro�le for an example run of a microCHP

based on a Stirling engine. It can be seen, that there is no one-to-one relation

between the microCHP being switched on and the power output. In general, a run

can be roughly divided into three phases:

• a startup phase, in which, a�er some grid tests, the engine is started and the

power output slowly increases to its maximum output value;

• a constant phase, in which the power output balances around the maximum

output value;

• a shutdown phase, in which the engine is slowed down.

Roughly the same division into phases yields for the heat output.
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Figure 3.1: Electricity output of a microCHP run

�ese appliance speci�c characteristics are modelled by the following paramet-

ric behaviour. We de�ne a maximum power output that corresponds to the average

electricity output in the constant phase. Furthermore, startup and shutdown be-

haviour is described via corresponding output functions. Finally, an electricity

to heat ratio is de�ned to give a direct relationship between the production of

electricity and heat.

Operational requirements

�e highest energy e�ciency is reached in the constant phase. For this reason,

and to prevent wearing of the system, longer runs are preferred over shorter ones.

�is leads to the requirement of having a minimum time that the microCHP has

to run, once switched on. For similar reasons the microCHP has to stay o� for a

minimum amount of time, once switched o�. Naturally, these minimum runtimes

andminimum o imes are larger than or equal to the startup and shutdown periods

that are required for an e�cient use of the microCHP, since we want to run at

maximum power for at least some time during each run (and of course for as long

as possible).

If the heat consumption would be directly supplied by the microCHP, the

decisions to run the microCHP are completely determined by the heat demand.

As a result o�en short runs of the microCHP would occur. �is is the reason

why microCHPs are in general combined with a heat bu�er. �is additional heat

bu�er allows to decouple production from consumption up to a certain degree and,

therefore, to make a planning possible.

Based on the above considerations, the planning for a house with a microCHP

and a heat bu�er is heat demand driven, where the requirement is to respect certain

lower and upper limits of the heat bu�er in order to be able to supply the domestic

heat demand at all times in a feasible planning. Note that there is a strong time

dependency between operational decisions; decisions in certain time periods have
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a large impact on possible decisions in future time periods. E.g. switching on

a microCHP now leads to a certain minimum amount of heat generation and,

therefore, increases the heat level in the heat bu�er. �is may have as a consequence

that in certain future time periods the microCHP cannot run, since it cannot get

rid of the produced heat without spoiling heat to the near environment, which is

an option that we do not allow.

Cooperational requirements

Once houses are collaborating in a larger grid, the aggregated power output of the

di�erent houses adds a global electricity driven element to the planning problem.

�e group of houses can act as a so-called Virtual Power Plant (VPP) by producing

a certain electricity output together. �is output may be partially consumed by the

houses themselves, but part of it may also be delivered to the electricity network.

�e aggregated electricity production is not always free to be chosen; there may

be several constraints on this aggregated power output. �is global electricity

driven requirement can be speci�ed by a desired lower bound and a desired upper

bound for the aggregated electricity output. �ese bounds can be determined by

(governmental) regulations, capacity limitations of the underlying grid or desired

operational achievements such as causing stability and reliability in the grid. Also

these bounds can origin from actions that were taken on an electricity market.

�e electricity retailer of the households may act on a short term electricity

market in advance (e.g. for 24 hours ahead) or on a realtime market. As the prices

of electricity on these markets vary over time, it may be bene�cial to steer the �eet

to produce more electricity in expensive periods. �e retailer may consider to

bid the expected overall production pro�le of the group/�eet on the market and

operate the �eet according to the cleared outcome of this bid. �is resulting pro�le

somehow will depend on the prices of the market, but for the planner the most

important question is whether he is able to reach this pro�le with the �eet or not,

since a deviation of the realized planning the next day leads to (huge) costs on

the balancing market. �is requirement can be speci�ed as operating the group

of microCHPs in such a way, that the aggregated electricity output lies between

desired bounds.

�e cooperational requirements represent the second direction of dependency

in the microCHP planning problem; next to time dependency the problem deals

with dependency in space. �e interaction between the di�erent types of require-

ments is depicted in Figure 3.2. In the le� part of the �gure, the solution space X 11
represents the space that is formed by respecting the appliance speci�c character-

istics for house/microCHP 1. �e time dependent operational requirements are

given by solution space X 12, and the intersection X 11,2 ∶= X 11 ∩ X 12 shows the feasible
solutions regarding appliance characteristics and time dependent behaviour. In

the middle part of the �gure, the spaces X i1,2 are combined for houses i = 1, 2, 3,
leading to the solution space Y1,2 ∶= X 11,2 × X21,2 × X31,2. �e right part of the �gure
shows this space Y1,2 and the subspace Ỹ1,2 ⊆ Y1,2, which includes the cooperational
requirements.
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Figure 3.2: Solution space for the microCHP planning problem

3.1.3 optimization objectives

Next to the requirements also the goals/objectives for the optimization problem of

planning a group of microCHPs need to be speci�ed. In general there are two kinds

of objectives for aVirtual Power Plant: maximizing the pro�t on an electricitymarket

or minimizing the deviation from the given bounds on the aggregated electricity

output. We do not consider other objectives as e.g. in [70], where microCHPs are

optimized for their individual pro�t.

Maximizing the pro�t on an electricity market

Given (a prediction of) the prices on an electricity market the planner searches for

the optimal operation of all microCHPs, such that all requirements are met and the

aggregated electricity output is maximized for the given prices. �e base for this

objective is the solution space Ỹ1,2.

Minimizing the deviation from the given bounds on aggregated electricity output

As a second type of optimization objective we do not consider the direct optimiza-

tion on an electricity market, but the feasibility of the problem is inspected. �e

nature of the combination of the two-dimensional dependencies in time and space

namely makes it sometimes really di�cult in practice to even �nd a solution that

respects all requirements. In such cases we may allow a planner to so�en some

of the cooperational requirements on the aggregated electricity output, meaning

that the base for this problem now gets the solution space Y1,2. We minimize the
violation of these cooperational requirements by minimizing the deviation from

these so�ened cooperational bounds as objective. Although this objective does

not optimize for an electricity market directly, the electricity market can still be

indirectly taken into account via the (so�ened) cooperational bounds.

3.2 Complexity

Since the invention of the computer in the last century a lot of progress has been

shown in solving computationally intensive problems. Both in hardware and in so�-

ware many advances have resulted into an increasing computational performance.
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Regarding the developments in hardware, Moore’s law, stating that the number of

transistors that can be placed on an integrated circuit doubles roughly every two

years, has been followed until now quite accurately. �is law has comparable e�ects

for the developments in processing speed and memory capacity for example, which

leads to an exponential growth in the capability to compute. Nevertheless, it is of

importance that methods/agorithms developed for given problems are e�cient in

the way that the number of steps to be executed gets minimized. �e focus in the

following subsection is on this algorithmic side of so�ware development and thus,

on the complexity of problems.

3.2.1 complexity classes

Complexity classes are introduced tomake a classi�cation possible that distinguishes

problems that are in general very di�cult to solve from problems that are easier

to solve. Di�culty in this sense can be loosely described by the relation between

the amount of calculations that is needed to �nd a solution and the input size of

the problem instance. It is worthwile to note the di�erence between this notion of

complexity classi�cation and the di�culty of solving speci�c problem instances.

For some problem instances namely, instance speci�c properties can be used to

derive some relations that make an e�cient solution method possible. However,

complexity is determined by the weakest possible problem instance; if there is some

instance that does not satisfy the speci�c properties, this e�cient solution method

cannot be applied to the problem in general.

Optimization problems and decision problems

So far, we only mentioned the term di�culty as a loose description of complex-
ity. To give a more precise de�nition, we �rst describe the di�erence between a

(combinatorial) optimization problem and a decision problem. �en we discuss

the di�erence between the two complexity classes P andNP .

An optimization problem is given by a set of feasible solutions X that satis�es
problem speci�c constraints and an objective function f on this set X. �e optimiza-
tion problem asks for a feasible solution x ∈ X that returns the optimal value of the
objective function f , i.e. an optimal solution to the underlying problem. A decision
problem does not search for an optimal solution to a problem. Instead it poses a
question that needs to be answered with a simple ‘yes’ or ‘no’. An optimization

problem can be easily transformed into a decision problem by introducing a certain

bound K and asking for feasible solutions x that also respect the additional con-
straint ‘ f (x) ≤ K’ or ‘ f (x) ≥ K’, where the inequality depends on the optimization
direction (≤ for a minimization problem and ≥ for a maximization problem). In

this way the decision variant of an optimization problem asks whether a solution

exists that is equal to or better than a bound K: is the problem feasible under the
additional constraint?
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P vsNP

�e complexity classes P and NP refer to the complexity of decision problems

rather than optimization problems. �e class P consists of all decision problems

that can be solved in polynomial time. �is means that a deterministic algorithm
exists that can solve all problem instances in polynomial time in the input size of

the instance. �e class NP consists of all decision problems that can be solved

in polynomial time by a non-deterministic algorithm. �e statement that it ‘can

be solved’ may be a bit misleading in this context of non-determinism. Namely,

non-determinism means that, for an instance that can be answered with ‘yes’, a

guessed solution can be veri�ed for its correctness by a polynomial time algorithm.
�e di�culty of guessing a (correct) solution is not taken into account.

For all decision problems in the class P the guessing and veri�cation are com-

bined in the polynomial time algorithm, showing that P ⊆ NP . One of the most

important remaining open problems (rewarded with a million dollar prize, see

[8]) is whether P = NP or P ≠ NP , i.e. can all solutions that can be veri�ed in

polynomial time also be found in polynomial time or not?

An important factor in this open problem is the notion ofNP-complete prob-

lems. A problem isNP-complete if all other problems inNP can be reduced to this
problem, where reduction means a transformation from the original problem into

the other problem in polynomial time. �is states that thisNP-complete problem

is at least as hard as all other problems inNP ; if a polynomial time algorithm can

be found for anNP-complete problem, then P = NP . �e other way around, if

P ≠ NP , then noNP-complete problem can be solved in polynomial time.

�e �rst decision problem that was proven to beNP-complete was the SATIS-

FIABILITY problem [45]:

SATISFIABILITY

INSTANCE: Given is a set of boolean variables B, and a boolean
expression b on these variables using ∨, ∧, ¬ and/or parentheses.
QUESTION: Is there a truth assignment for the variables in B such that
the boolean expression b is truth (i.e. satis�ed)?

For the proof of Cook we refer to [45], where the boolean expression b is con-
sidered in disjunctive normal form, or to [56], where b is considered in conjunctive
normal form. Based on this proof a long list ofNP-complete problems has been

formed, of which a classical overview has been given by Garey and Johnson [56].

To prove that a decision problem is NP-complete, one has to perform the fol-

lowing actions. First, the decision problem needs to be in NP . �en a known

NP-complete problem needs to be reduced to this decision problem, which means

that a polynomial transformation is found from theNP-complete problem to the

decision problem under consideration. AnyNP-complete problem can be used as

a starting point for provingNP-completeness. However, usually one of the basic

NP-complete problems is chosen.
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Guidelines for solving new problems

�e above complexity classi�cation for decision problems is transfered to optimiza-

tion problems by calling an optimization problemNP-hard, if its corresponding

decision problem isNP-complete. �e complexity classi�cation can be used as

a guidance on how to treat a given optimization problem. It is not likely to �nd

an e�cient exact algorithm for an NP-hard problem. However, the size or the

properties of relevant practical instances may be such that an exact algorithm may

be applicable. If exact algorithms are not helpful for these practical instances since

the size of these instances gets too large, another approach is to use heuristics to

�nd solutions that are close to the optimum. �e focus in developing heuristics

is twosided: they should provide quality solutions in reasonable time. Bounds

for the computation time are o�en provided by the time that is available for solv-

ing practical instances. Since the optimal solution is o�en unknown (otherwise

we would not need heuristics) it is di�cult to measure the quality of a solution.

However, for some well de�ned problems it can be proven that a speci�c heuristic

never leads to a solution that deviates more than a �xed factor from the optimal

solution. �is heuristic is called a ρ-approximation, since the objective value f (x)
of the constructed solution x is kept within a factor ρ of the optimal value OPT
(OPT ≤ f (x) ≤ ρOPT for a minimization problem and ρOPT ≤ f (x) ≤ OPT for
a maximization problem).

An example: the Traveling Salesman Problem

To clarify the above concepts a bit more, we consider the well known Traveling

Salesman Problem. �e Traveling Salesman Problem (TSP) deals with a salesman

who has to visit n cities, including his hometown as a starting and �nishing point.
�e distance between two cities i and j is given by d i , j . �e objective of the TSP is
to minimize the total distance of a tour that visits all cities. �e decision variant of

the Traveling Salesman Problem is de�ned by (see also [56]):

TRAVELING SALESMAN PROBLEM

INSTANCE: Given is a set C of n cities, distances d i , j ∈ Z+ for all
arcs (i , j) between cities i , j ∈ C, and a bound B ∈ Z+.
QUESTION: Is there a tour of all cities in C with a total distance no
more than B; i.e. does an ordering (π(1), . . . , π(n)) exist such that
n−1
∑
i=1
dπ(i),π(i+1) + dπ(n),π(1) ≤ B?

�is decision problem is shown to beNP-complete [56]. In the following we

present some speci�c methods to show that such a hard problem can be approached

from di�erent angles and that practical results can still be achieved for such a

hard problem. First we show an exact algorithm that has the lowest known time

complexity bound. �en we give another exact solution method by describing

the TSP by an Integer Linear Programming (ILP) formulation. Furthermore we
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show a heuristic method, and the combination of this heuristic with other solution

techniques into a computer program that is fully dedicated to solving TSPs.

• Exact algorithm (Held-Karp algorithm/Bellman algorithm [32, 63])
�e number of possible tours for the TSP equals (n − 1)!, since the start-
ing city can be chosen arbitrarily, which leaves (n − 1)! choices for the re-
maining n − 1 cities. If we consider the symmetric TSP, this number equals
(n−1)!
2
. One of the existing exact algorithms that solves the TSP has been

proposed by [63] and [32]. �is algorithm is currently still known to have

the lowest time complexity ofO(n22n) [130]. �e idea of this on dynamic
programming based method is to avoid calculating all possible tours. In-

stead, only relevant subpaths are taken into consideration in the following

way. Without loss of generality city 1 is chosen as the starting point for the

dynamic programming method. States (S , j) are given by a subset of cities
S ⊆ C/{1} and a city j ∈ S that represents the last city visited in the shortest
path from city 1 to j through all cities in S. �e value v(S , j) belonging to
state (S , j) denotes the length of this shortest path. �e algorithm calculates
the value v(S , j) by looking at the values v(S/{ j}, i) for subpaths ending in
i ∈ S/{ j}. Initially, v({i}, i) = d1, i for all i ∈ C/{1}. �en in several phases in
which the size of each subset incrementally expands, the recursive equation

v(S , j) = mini∈S/{ j} v(S/{ j}, i) + d i , j is used to calculate the shortest path
for the corresponding subsets. Finally, the shortest tour v(C) is the shortest
path from 1 to any other city i, that visits all cities in C/{1} and returns to
city 1: v(C) = mini∈C/{1} v(C/{1}, i)+ d i ,1. �is algorithm is summarized in
Algorithm 1.

Algorithm 1 Exact algorithm for the Traveling Salesman Problem
v({i}, i) = d1, i∀i ∈ C/{1}
s = 2
while s < |C| do
for all S ⊆ C/{1}, j ∈ S , ∣S∣ = s do
v(S , j) = mini∈S/{ j} v(S/{ j}, i) + d i , j

end for
s = s + 1

end while
v(C) = mini∈C/{1} v(C/{1}, i) + d i ,1

• ILP formulation
An alternative way to achieve an exact solution method, is to model the given

problem as an Integer Linear Programming (ILP) formulation. Using binary

decision variables x i , j indicating whether arc (i , j) is part of the tour (x i , j = 1)
or not (x i , j = 0), the following formulation (3.1)-(3.6) models the TSP as an
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ILP:

min
n
∑
i=1

n
∑
j=1
d i , jx i , j (3.1)

s.t.
n
∑
i=1
x i , j = 1 ∀ j ∈ {1, . . . , n} (3.2)

n
∑
j=1
x i , j = 1 ∀i ∈ {1, . . . , n} (3.3)

y i − y j + nx i , j ≤ n − 1 ∀i ∈ {1, . . . , n}, j ∈ {2, . . . , n} (3.4)

x i , j ∈ {0, 1} ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n} (3.5)

y i ∈ Z+ ∀i ∈ {1, . . . , n} (3.6)

In Equation (3.1) the objective function is to minimize the sum of arc lengths

of the chosen arcs∑
n
i=1∑

n
j=1 d i , jx i , j . Equations (3.2) and (3.3) demand that

each city has one incoming arc and one leaving arc, which corresponds to the

requirement to visit each city exactly once. �ese equations (3.2) and (3.3) are

necessary restrictions for having a tour, but they are not su�cient restrictions.

�ese restrictions namely also allow for disjoint nonempty subtours, which

are impossible to follow in practice by a salesman. Equation (3.4) prevents

the existence of disjoint nonempty subtours, modelled as in [91]. �e idea

of this equation is to create an ordering for the n cities, where city 1 is the
initial city, and force the salesman to visit the cities in this order. �is leads

to n − 1 moves forward in the ordering, which leaves one move from the �nal
city to the initial city to complete the tour. �is �nal move to city 1 plays a

crucial role in the proof of the existence of exactly one subtour. Equation

(3.4) namely de�nes the following relationship:

∀ j ≠ 1 ∶ x i , j = 1⇒ y i < y j (3.7)

Now assume that a subtour T = {i1 , i2 , . . . , ik , i1} exists where city 1 is not
part of the subtour. By (3.7) this gives y i1 < y i2 < . . . < y ik < y i1 , which is a
contradiction. So a subtour can only exist when starting and ending in city 1.

�us, no feasible solution with two or more subtours can exist, since at least

one subtour would not contain city 1.

• Lin-Kernighan heuristic
�e Lin-Kernighan heuristic [89] provides a method that iteratively tries to

improve a given tour. To improve an existing tour so-called k-opt moves are
used. In general a k-opt move consists of replacing k arcs from a feasible
tour by k new arcs in such a way that connectivity of the complete graph is
preserved. A typical k-opt heuristic for the TSP searches for shorter tours
using a speci�c k-opt move. For k = 2, Figure 3.3 shows a feasible and an
infeasible 2-opt move, where the dashed arcs are replaced by the dotted arcs.

�e 2-opt move in Figure 3.3a preserves the connectivity of the complete
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(a) feasible move (b) infeasible move

Figure 3.3: A feasible and an infeasible 2-opt move

graph and thus results in a feasible tour, whereas the move in Figure 3.3b is

not a feasible move, as it results in two disconnected subgraphs. �is means

that for k = 2 the move is completely determined once the two arcs that are
to be removed have been chosen. In Figure 3.4 we present the four feasible

3-opt moves for k = 3. A k-opt TSP heuristic uses the set of feasible k-opt

(a) 3-opt move (b) 3-opt move (c) 3-opt move (d) 3-opt move

Figure 3.4: Feasible 3-opt moves

moves for each combination of k arcs in a local search strategy.
�e basis for the Lin-Kernighan heuristic is to use not just one speci�c value

for k, but to allow di�erent k-opt moves in one neighbourhood for a local
search strategy. �is is done by applying a speci�c way to construct k-opt
moves of variable length. Only feasible moves are allowed, since the heuristic

does not want to ‘repair’ broken tours. �e way to construct these variable

k-opt moves is by sequentially breaking an arc and adding a new arc. Ini-
tially one arc (v1 , v2) is removed and a new arc (v2 , v3) (that does not exist
already) is added. In the ith step city v2(i+1) is chosen, the arc (v2i+1 , v2(i+1))
is removed and a new arc (v2(i+1) , v2(i+1)+1) to a next city v2(i+1)+1 is added.
�e crucial step in the sequential construction is that the next arc that will

be broken is the unique existing arc (v2i+1 , v2(i+1)) incident to v2i+1 that al-
lows the tour to stay connected if the arc (v2(i+1) , v1) would be added. �is
means that each arc that is broken should allow the possibility to complete

a connected tour with a single addition of an arc. As the next arc that is

actually added, any arc (v2(i+1) , v2(i+1)+1) can be chosen (where v2(i+1)+1 has
not been considered during the construction before), including the option

to complete the tour via (v2(i+1) , v1). Figure 3.5 gives a summary of the se-
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v1 v2
(a) removing (v1 , v2)

v1 v2

v3

(b) adding (v2 , v3)

v1 v2

v3
v4

(c) choosing v4 and re-
moving (v3 , v4)

Figure 3.5: Sequential construction of k-opt moves

quential construction, where the choice for v4 is speci�ed. Note that the
other neighbour of v3 cannot be chosen, since a connected tour cannot be
completed with one arc. �e sequential construction continues until the

tour returns to v1, or when the last removal and addition do not improve (i.e.
decrease) the tour length. In this case the last added arc is replaced by the arc

to v1. Note that not all feasible k-opt moves can be constructed in this way
(e.g. Figure 3.4b cannot be constructed, since all reductions from this 3-opt

move lead to infeasible 2-opt moves that cannot be created sequentially). To

partially compensate for these lacking moves, the �rst choice (for v4) may
be non-sequential, in which case of course the eventual move cannot be a

2-opt move and some rearrangements are necessary to keep an eventual tour

connected. �e heuristic uses speci�c options to search for new arcs; we refer

to [89] for more details of the algorithm and to [64, 65] for implementation

details.

In Table 3.1 the geographical distances between cities, based on the geograph-

ical distance calculation de�ned by [14], are given for a small example to

demonstrate the behaviour of the Lin-Kernighan heuristic. Figure 3.6a shows

the location of the capital cities of the 12 provinces of �e Netherlands. An

initial tour given in Figure 3.6b is improved by applying a 2-opt move (Fig-

ures 3.6c and 3.6d) and a 3-opt move (Figures 3.6e and 3.6f). As before, the

dashed arcs are replaced by the dotted arcs. �e �nal tour that is found also

represents the optimal tour for this instance. �is tour is also printed in bold

in Table 3.1.

• Concorde
Concorde [4] is a computer program that is created to solve TSP instances. It

includes the Lin-Kernighan heuristic to �nd feasible solutions, but foremost

it consists of a branch-and-cut method that solves an ILP formulation of the

TSP, where it uses elaborate cutting techniques to improve on the lower bound.

In general, to solve an ILP formulation, the principle of a branch-and-cut

method can be applied. In an iterative way Linear Programming relaxations
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GRO - 53 26 85 109 145 161 160 199 277 192 271

LEE 53 - 57 79 81 136 133 120 160 240 172 262

ASS 26 57 - 61 91 120 141 146 183 260 168 245

ZWO 85 79 61 - 42 61 83 100 131 204 108 188

LEL 109 81 91 42 - 66 53 59 92 169 92 185

ARN 145 136 120 61 66 - 58 99 112 168 54 128

UTR 161 133 141 83 53 58 - 47 55 122 47 144

HAA 160 120 146 100 59 99 47 - 41 121 91 186

DHA 199 160 183 131 92 112 55 41 - 81 82 168

MID 277 240 260 204 169 168 122 121 81 - 119 162
DBO 192 172 168 108 92 54 47 91 82 119 - 97

MAA 271 262 245 188 185 128 144 186 168 162 97 -

Table 3.1: Geographical distances between the capital cities of the 12 provinces of

�e Netherlands

(a) the instance (b) initial tour (c) 2-opt move (d) a�er 2-opt move

(e) 3-opt move (f) a�er 3-opt move

Figure 3.6: Example: the capital cities of the 12 provinces of �e Netherlands

of the ILP are solved (e.g. by use of the simplex algorithm). If the solution

to this LP relaxation is not a completely integer solution, so-called cuts can

be added, which are additional inequalities derived from extra information

from the LP-relaxation. �e addition of these cuts is combined with a normal

branch-and-bound strategy, which consists of adding constraints that break

fractional solutions in two separate branches, followed by a search through

the created tree of LP problems until an integer solution is found that is

globally optimal.

In the mentioned ILP formulation (3.1)-(3.6) we eliminate subtours by ex-
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plicitly using Equation (3.4). By use of a solver (CPLEX 12.2) cutting planes

are automatically selected and the problem is solved. Opposite to this ILP

formulation, cutting planes are speci�cally designed in the Concorde for

solving TSPs, based on the work of [49]. �e basic LP formulation of the

Concorde only consists of (a variant of) Equations (3.2), (3.3) and (3.5), and

cutting planes are added to �nd a feasible tour. �e Concorde consists of

various types of cuts and a way of selecting between them in a branch-and-

cut framework. Below the most used cut is explained. For a more detailed

explanation of this cut and a description of the other cuts we refer to [19].

�e basic idea behind the most used cut is to eliminate subtours. �e basic

LP relaxation of (3.1)-(3.6) without subtour elimination is:

min∑
e
dexe (3.8)

s.t.∑
e
(xe ∣i ∈ e) = 2 ∀i ∈ {1, . . . , n} (3.9)

0 ≤ xe ≤ 1 ∀e , (3.10)

where xe de�nes the selection of an undirected edge e ∈ E (E is the set of
edges in the complete graph on the city set C) and i ∈ e means that i ∈ C
is incident with e. Equation (3.9) requests that each city is incident with
two edges (which surely has to be valid in a feasible solution). �e binary

constraint on the choice for selecting an edge is relaxed in Equation (3.10).

Concorde uses now di�erent heuristics to �nd cutting planes that remove

subtours. To explain this we describe an important property of a subtour. We

de�ne the set S ⊂ C as a strict subset of C. Any strict subset S must have two
or more connections to the cities that are not in S:

∑
e
(xe ∣e ∪ S ≠ ∅, e ∪ C/S ≠ ∅) ≥ 2∀S ⊂ C , S ≠ ∅, (3.11)

where e ∪ X means that some city in the set X is incident with e. �is
restriction (3.11) is called the subtour inequality. Several heuristics have been

developed that �nd subsets S ⊂ C that do not ful�ll the subtour inequality
(i.e. ∑e(xe ∣e ∪ S ≠ ∅, e ∪C/S ≠ ∅) < 2). Corresponding cutting planes (3.11)

are then added.

In Figure 3.7 the fourmethods are compared to each other for their computation

time. �is comparison is done on a desktop computer (3.00 GHz and 2.00 GB

RAM). We implemented the Held-Karp algorithm in C++ in combination with

an SQL database to overcome large memory problems. �e ILP formulation is

implemented in AIMMS modelling so�ware [1] using CPLEX 12.2. We use the

implementation of the Lin-Kernighan heuristic by [6] and the Concorde TSP solver

from [4].

We compare several instances from the publicly available TSP library TSPLIB

[14]. �e size of these instances varies between 14 and 3795 cities. In addition to
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Held-Karp algorithm ILP formulation Lin-Kernighan Concorde

Figure 3.7: Comparison of runtimes for TSP instances

this set, the instance of the capital cities of the 12 provinces of �e Netherlands is

used (see Table 3.1).

�e Held-Karp algorithm has the lowest known time complexity. �e number

of states that has to be evaluated is completely determined by the size of the problem

(although the actual number of calculating steps may vary per evaluated state),

which results in very predictable computation times. �e ILP formulation shows

to be a faster exact algorithm in practice than the Held-Karp algorithm, although

no guarantee can be given that this is always the case. �e especially designed

TSP solver Concorde improves this practical computation time by a large amount.

�is shows that in practice o�en quite large instances can be solved to optimality,

although no guarantee can be given that this solution is computed in reasonable

time. �e Lin-Kernighan heuristic results in comparable results to the Concorde

(which is no surprise), with a side remark that the optimal tour is not found for the

largest problem (consisting of 3795 cities).

Outline for solving the microCHP planning problem

�e above example indicates that a mathematical problem can be solved in di�erent

ways, varying from exact algorithms to heuristics. We treat the planning problem

for a group of microCHPs in a similar way. First we show the complexity of the

microCHPplanning problem. Next we develop solution techniques for this problem.

We explore the possibilities for solving this problem by looking at exact formulations

and heuristics.
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3.2.2 3-partition

In the previous subsectionwe presented an overview of the complexity classesP and

NP andwe gave an example of anNP-complete problem, including computational

results for di�erent methodologies that can be applied to such a problem. In this

subsection another classicalNP-complete problem is introduced, which we use to

prove that the planning problem for a group of microCHPs isNP-complete itself.

�is problem is called 3-PARTITION and has the following form, as described by

[56]:

3-PARTITION

INSTANCE: Given is a set A of 3m elements, a bound B ∈ Z+, and
a size s(a) ∈ Z+ for each a ∈ A such that B

4
< s(a) < B

2
and∑

a∈A
s(a) = mB.

QUESTION: Can A be partitioned into m disjoint sets A1 ,A2 , . . . ,Am
such that, for 1 ≤ i ≤ m, ∑

a∈A i
s(a) = B?

�e decision problem consists of the question whether m bins of size B can be
exactly �lled with the given 3m elements. �ese elements have an integer size that
is larger than B

4
and smaller than B

2
; elements have to be completely assigned to

exactly one bin. When four or more elements are assigned to a certain bin, this can

never be part of a feasible solution to the 3-PARTITION problem, since the sum of

the sizes in this particular bin is strictly larger than B in this case. When two or less
elements are assigned to a certain bin, this can never be part of a feasible solution,

since the sum of the sizes in the bin is now strictly smaller than B. �is leads to the
observation that all bins must contain exactly 3 elements to allow the possibility of

having a feasible solution to the 3-PARTITION problem. �e name of the problem

origins from this observation: all elements need to be partitioned in disjoint sets of

3 elements, such that these sets all have equal sums of the element sizes.
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(a) An instance of 3-PARTITION
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(b) A slightly altered instance of 3-PARTITION

Figure 3.8: Two instances of 3-PARTITION
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As an example of 3-PARTITION, we formulate an instance, which consists of

33 elements and a bound B = 50 for the 11 bins that have to be �lled. �e size s(a)
of each element a can be picked from the following set of allowed element sizes:
s(a) ∈ {13, 14, . . . , 24}. �e numbers of elements for each size in this instance are

shown in Figure 3.8a. �e sum of all element sizes equals 550, which at least does not

exclude the existence of a 3-PARTITION. �e question remains whether a feasible

partitioning can be found.

1 2 3 4 5 6 7 8 9 10 11

0

5

10

15

20

25

sets

si
z
e

Figure 3.9: One of 16 feasible partitions in the given 3-PARTITION example

Figure 3.9 shows a solution to this particular instance, where the distribution of

the elements over the bins is depicted. It turns out that in total 16 possible solutions

exist for this instance. If we now alter the instance slightly by removing 4 elements

of size 13 and 4 of size 16, and adding 4 elements of size 14 and 4 of size 15, the sum

of all element sizes does not change and neither does the number of elements as can

be seen in Figure 3.8b. However, for this slightly altered instance no feasible solution

exists. �is small example shows the essence of the di�culty of 3-PARTITION.

3.2.3 complexity of the microchp planning problem

Until now, the microCHP planning problem has been only described in words. In

Section 3.3 we give a more detailed description and a mathematical modelling of

this planning problem. Here we give a simpli�ed version of one of the mentioned

versions of the decision problem leaving out details on how the inputs are precisely

generated. We show that already this simple version isNP-complete in the strong

sense.

�e microCHP planning problem considers N microCHPs (houses). Each
of these microCHPs has a �nite set of (feasible) local production patterns. More
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formally, for each house n = 1, . . . ,N a set of production patterns Cn is given. Each
pattern p ∈ Cn is a {0,1} vector of dimensionNT , specifying the use of themicroCHP
in the di�erent time intervals, whilst ful�lling all local (household) constraints of

the planning problem (i.e. p is a feasible solution for the standalone household
problem of house n). In this way, the constraints of the local houses are already
incorporated in the sets C1 , . . . ,CN , and the only constraint that is le� for the global
planning problem is to respect the global prede�ned electricity production bounds

Pupper = (Pupper1 , . . . , PupperNT ) and P l ower = (P l ower1 , . . . , P l owerNT ). To formalize

these constraints, let pe(p) be the vector of generated electricity, corresponding to
the production pattern p (note, that pe(p) is independent of the actual house for
which p is used as pattern!). To respect the production bounds Pupper and P l ower ,
for each house n = 1, . . . ,N a production pattern pn ∈ Cn has to be chosen such

that P l owerj ≤
N
∑
n=1
pe(pn) j ≤ Pupperj for each j ∈ {1, . . . ,NT}. Summarizing, we get

the following decision problem:

�emicroCHP planning problem

INSTANCE: Given is a collection of sets C1 ,C2 , . . . ,CN of NT-dimensional
binary production patterns, an electricity generation function pe and
target electricity production bounds Pupper = (Pupper1 , . . . , PupperNT ) and

P l ower = (P l ower1 , . . . , P l owerNT ).

QUESTION: Is there a selection of production patterns pn ∈ Cn for

each n = 1, . . . ,N , such that P l owerj ≤
N
∑
n=1
pe(pn) j ≤ Pupperj for each

j ∈ {1, . . . ,NT}?

Figure 3.10 gives an example of the output of the microCHP planning prob-

lem. For a 24 hour time horizon it depicts the planned on/o� operation in time

(horizontally) for 10 di�erent microCHP appliances (vertically). Looking at the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time (h)

h
o
u
se
s

Figure 3.10: An example of the output of the microCHP planning problem

combined generation we see that in this example at any moment in time not more

than 5 microCHP appliances are switched on simultaneously.

In the following we prove the complexity of this microCHP planning problem.
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�eorem 1�e microCHP planning problem isNP-complete in the strong sense
Proof �e problem whether a feasible match exists between the production

bounds (P l ower , Pupper) and the sum of possible electricity production patterns
of all houses is proven to be NP-complete in the strong sense by reducing 3-

PARTITION to the microCHP planning problem.

First, it is clear that the microCHP planning problem belongs to NP , since

feasibility can be veri�ed within polynomial time, once production patterns are

chosen for each microCHP. �e task that is le� to do is to reduce 3-PARTITION to

the microCHP planning problem. To do this we construct a speci�c instance of the

microCHP planning problem and show that this instance corresponds to a general

instance of 3-PARTITION, and that this transformation is done in pseudopolyno-

mial time. Note that it is su�cient to use a pseudopolynomial reduction to prove

NP-completeness in the strong sense.

�e speci�c instance of the microCHP planning problem that corresponds to a

general instance of 3-PARTITION is as follows. First, the time horizon consists of

2mB time intervals. Next, for each element a ∈ A of the 3-PARTITION problem, a
cluster Ca is created withm(B− s(a)+ 1) production patterns. So we have N = 3m
houses. Each of the m(B − s(a) + 1) patterns in cluster Ca has a sequence of s(a)
consecutive 1’s at time intervals (see Figure 3.11). �e dark gray areas correspond to

sequences of 1’s and light gray areas to sequences of 0’s. Note, that the patterns are

chosen such that only production in the periods [(2i+1)B, 2(i+1)B], i = 0, . . . ,m−1
is possible for the created houses. If MR is chosen as the smallest element of the
3-PARTITION instance and if the heat demand is such that at the end of the

day the microCHP had to run for s(a) time intervals in house a, all production
patterns p are feasible for the microCHP model (note that MO is not important,
since each pattern contains only one run). �e production function is de�ned by

pe(p) j = Emaxp j (meaning that startup and shutdown periods are ignored), and
the target production plan by:

Pj = Pupperj = P l owerj =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Emax (2i + 1)B < j ≤ 2(i + 1)B
for some i ∈ {0, . . . ,m − 1}

0 otherwise.

(3.12)

�is choice implies that for each house a now exactly one planning pattern from
Ca must be chosen. Due to the de�nitions of Pj and pe, these patterns must be
chosen such that two patterns never overlap and in all intervals within them periods
[(2i + 1)B, 2(i + 1)B], i = 0, . . . ,m − 1 of length B, exactly one pattern has to be
active. �is comes down to assigning to each interval [(2i + 1)B, 2(i + 1)B] non
overlapping patterns of total length exactly B. Since furthermore for each house
exactly one pattern is used in this process, a feasible solution of the microCHP

planning problem instance exists if and only if 3-PARTITION has a solution. �us,

the constructed instance of the microCHP planning problem corresponds to a

general instance of 3-PARTITION.

�eused reduction is clearly pseudo-polynomial in the size of the 3-PARTITION

instance, but, as mentioned, this is su�cient to prove the result of the theorem. ∎
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Figure 3.11: �e cluster Ca , consisting of m(B − s(a) + 1) production patterns for
the house corresponding to the element a of length s(a).

�e construction in the proof is limited to only one run per day for each house

and the minimum runtime depends on the smallest element a, which does not
represent a very realistic instance. In real world instances, a microCHP has multiple

runs on a single day, due to a large heat demand and a relatively small heat bu�er,

that does not allow to produce the complete heat demand in a single long run.

To indicate that also real world instances include the properties, which make the

microCHP planning problem hard, we construct a more realistic but also more

complicated instance that broadens the limitations that are used in the proof. For

this example we use each element a of 3-PARTITION in B − s(a) + 1 houses; each
of them containingm+ 1 production patterns, and in total we use∑∣A∣

i=1 B− s(a i)+ 1
houses as in Figure 3.12. Each house n has a basic pattern pbn , representing the runs
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Figure 3.12: Production patterns in a more realistic example

of a normal day within a time horizon of 3m + (3m + 2)B time intervals. Next to
the basic pattern, each house has m variations on this basic pattern, in which this
basic pattern is copied and some adjacent production is done, as in Figure 3.12. We

assume that heat demand and bu�er level constraints are ful�lled, and that there is

enough space le� in the heat bu�er to run for the additional s(a) + 1 time intervals
for the given house. �e periods [0, B] and [3m+(3i − 1)B, 3m+3iB], i = 1, . . . ,m
are le� idle in all patterns. Production is allowed in the periods [B, 3m + 2B] and
[3m + 3iB, 3m + (3i + 2)B)], i = 1, . . . ,m, where a run of lengthMR is positioned
precisely in front of the runs of length s(a) and the run of length 1. Obviously, these
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runs ful�ll minimum runtime and o ime constraints if we chooseMR = MO ≤ B.
�e �rst run of the patterns in each cluster Ca has a special form. For each cluster
we want to select a variation pattern that has additional generation compared to

the basic pattern. To derive this, we designed a so-called selection section of length

∣A∣ = 3m (see Figure 3.12). In the selection section exactly one 1 is added at the
same time interval, for each cluster of microCHPs corresponding to the same

a ∈ A. �e target production plan is de�ned in a similar way as Equation (3.12):

Pj = Pupperj = P l owerj =
N
∑
n=1
pbn + f j , where pe(p) j = Emaxp j (startup and shutdown

periods are neglected again) and

f j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Emax 2B < j ≤ 3m + 2B or
3m + (3i + 1)B < j ≤ 3m + (3i + 2)B for some i ∈ {1, . . . ,m}

0 otherwise.

(3.13)

Equation (3.13) is given in the top of Figure 3.12. Due to the de�nition of Pj and the
design of the selection section exactly one variated pattern belonging to a must be
chosen from them(B− s(a) + 1) variations based on the element a. �us, only one
of the corresponding B − s(a) + 1 houses does not select its basic pattern. �erefore
all elements a are chosen exactly once, and they must �ll the m periods of length B
in the same way as in the given proof. �is example shows that we can construct

also a more realistically structured instance that has a direct correspondence to

3-PARTITION.

3.2.4 optimization problems related to the microchp planning problem

As mentioned before we consider two types of optimization problems that are

related to the decision problem shown to beNP-complete in the previous section.

In the �rst type of optimization problem we want to maximize the pro�t that is

made on an electricity market with (predicted) prices π = (π1 , . . . , πNT ).

Maximizing the pro�t on an electricity market

INSTANCE: Given is a collection of sets C1 ,C2 , . . . ,CN of NT-dimensional
binary production patterns satisfying the operational requirements of

the corresponding households, an electricity generation function pe,
target electricity production bounds Pupper = (Pupper1 , . . . , PupperNT ) and

P l ower = (P l ower1 , . . . , P l owerNT ) and an electricity price π.
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Maximizing the pro�t on an electricity market (continued)

OBJECTIVE: Maximize the pro�t that can be made on the electric-

ity market while satisfying domestic (operational) and �eet (cooperational)

constraints:

max

NT
∑
j=1

(π j
N
∑
n=1
pe(pn) j)

where P l owerj ≤
N
∑
n=1
pe(pn) j ≤ Pupperj for each j ∈ {1, . . . ,NT}

and pn ∈ Cn for each n ∈ {1, . . . ,N}.

In the second type of optimization problem we introduce slack and excess

variables sl and ex that measure the deviation from the bounds on the target
electricity production. �e sum of slack and excess over the full planning horizon

is minimized, while respecting the adjusted cooperational requirements.

Minimizing the deviation from the given bounds on aggregated
electricity output

INSTANCE: Given is a collection of sets C1 ,C2 , . . . ,CN of NT-dimensional
binary production patterns p = (x1 , . . . , xNT ) satisfying operational
requirements, a corresponding electricity generation function pe,
target electricity production bounds Pupper = (Pupper1 , . . . , PupperNT ) and

P l ower = (P l ower1 , . . . , P l owerNT ).

OBJECTIVE: Minimize the deviation from the target electricity bounds

Pupper and P l ower :

min

NT
∑
j=1

(sl j + ex j)

where
N
∑
n=1
pe(pn) j − ex j ≤ Pupperj for each j ∈ {1, . . . ,NT} and

P l owerj ≤
N
∑
n=1
pe(pn) j + sl j for each j ∈ {1, . . . ,NT} and

pn ∈ Cn for each n ∈ {1, . . . ,N}.

3.3 An Integer Linear Programming formulation

In this section we model the two versions of the microCHP planning problem by

an Integer Linear Programming (ILP) formulation. �is ILP formulation is used to

explain the di�erent requirements of the underlying problem in more detail. A�er

modelling the problem as an ILP, we discuss some small benchmark instances and

the solutions to these instances and draw conclusions on the applicability of ILP in

practical situations.
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3.3.1 ilp formulation

In practice a decisionmaker is completely free to instantaneously switch on or switch

o� a microCHP at any moment in time. However in our model, we discretisize the

time and allow a decisionmaker only to switch on or o� themicroCHP for complete

time intervals. �e discretization of the time horizon on the one hand leads to a

simpler model, but on the other hand, the short term electricity market also works

with time intervals, hence a discretization of time also matches the context the

problem is used in. More precisely, we divide the planning horizon [0, T] of the
microCHP planning problem into NT time intervals [tk , tk+1] of equal length T

NT .

�e decision to have a microCHP on or o� is made for a complete interval [tk , tk+1].
As a consequence of this, we introduce decision variables x ij for the intervals j and
microCHPs i:

x ij =
⎧⎪⎪
⎨
⎪⎪⎩

1 if the ith microCHP is on during interval j
0 if the ith microCHP is o� during interval j,

(3.14)

where interval j is the interval [t j−1 , t j], j = 1, . . . ,NT . A solution to the operational
planning problem of a single house i is a vector x i = (x i1 , . . . , x iNT ) ∈ X

i
1,2, where

X i1,2 ⊆ {0, 1}NT is the NT-dimensional space of possible binary decision variables
respecting appliance speci�c and operational constraints. In case the objective is

pro�tmaximization, a solution to themicroCHPplanning problem is a combination

of domestic solutions x = (x 1 , . . . , xN) ∈ Ỹ1,2 and in case the objective is tominimize
the deviation from the target electricity production bounds, it is a vector x =

(x 1 , . . . , xN) ∈ Y1,2.
In the followingwe transform this general description of a solution to constraints

formulated by linear inequalities using additional (integer) variables. To start we

request that the variables x ij are binary decision variables:

x ij ∈ {0, 1} ∀i ∈ I,∀ j ∈ J . (3.15)

We use the notation I to represent the set of houses I = {1, . . . ,N} and J for the set of
intervals J = {1, . . . ,NT}. Whenever an equation is not applied to all intervals in the
planning horizon or to intervals that are situated outside the planning horizon, this

is explicitly denoted. We furthermore de�ne binary parameters x ij that represent
the given behaviour of the microCHP in the short term history before the start of

the planning period (i.e. j = 0,−1,−2, . . .). �is information is used to guarantee a
correct transition between a current (realization of a) planning and the �rst couple

of intervals of the planning horizon. Next we discuss the three types of requirements

for the planning of the microCHPs.

Appliance speci�c constraints

A microCHP appliance has speci�c startup and shutdown behaviour and a heat to

electricity ratio (as explained in Section 3.1.2), that de�ne the heat and electricity

output of a run. We have to model this behaviour by linear constraints. For this,



60

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

let the parameter G imax characterize the heat generation for a time interval if the
microCHP of house i is running at full power, and let a value α i specify the ratio
between electricity and heat generation. Furthermore, each microCHP has two

vectors: Ĝ i = (Ĝ i1 , . . . , Ĝ iN iup), giving the loss of the heat generation during the
startup intervals and Ǧ i = (Ǧ i1 , . . . , Ǧ iN idown), giving the heat generation that still
occurs during the shutdown intervals, where N iup and N idown give the number of
intervals that it takes to startup and shutdown respectively. �e heat generation g ij
in time interval j ∈ J for house i ∈ I is now given by:

g ij = G imaxx ij −
N iup−1
∑
k=0

Ĝ ik+1start
i
j−k +

N idown−1
∑
k=0

Ǧ ik+1stop
i
j−k ∀i ∈ I,∀ j ∈ J , (3.16)

where start ij and stopij are additional binary start and stop variables, indicating
if in an interval the decision is made to start the microCHP or to turn it o�. �e

generation of electricity e ij follows from g ij by:

e ij = α i g ij ∀i ∈ I,∀ j ∈ J . (3.17)

�e binary variables start ij and stopij are not additional decision variables, but
variables depending on the decision variables x ij . To ensure that the variables start ij
and stopij are consistent with the x-variables, constraints (3.18)-(3.25) are added. If
necessary ( j < 1), the run history x is used in these equations by de�ning x ij = x

i
j .

start ij ≥ x ij − x ij−1 ∀i ∈ I, j = 2 −MR i , . . . ,NT (3.18)

start ij ≤ x ij ∀i ∈ I, j = 2 −MR i , . . . ,NT (3.19)

start ij ≤ 1 − x ij−1 ∀i ∈ I, j = 2 −MR i , . . . ,NT (3.20)

stopij ≥ x ij−1 − x ij ∀i ∈ I, j = 2 −MO i , . . . ,NT (3.21)

stopij ≤ x ij−1 ∀i ∈ I, j = 2 −MO i , . . . ,NT (3.22)

stopij ≤ 1 − x ij ∀i ∈ I, j = 2 −MO i , . . . ,NT (3.23)

start ij ∈ {0, 1} ∀i ∈ I, j = 2 −MR i , . . . ,NT (3.24)

stopij ∈ {0, 1} ∀i ∈ I, j = 2 −MO i , . . . ,NT (3.25)

Note that the parametersMR i andMO i which are used in Equations (3.18)-(3.25),
are not de�ned yet. For now it su�ces to know that N iup ≤ MR i and N idown ≤

MO i , which implies that the necessary start and stop variables for (3.16) are at
least speci�ed. �e parametersMR i andMO i are explained below as part of the
operational constraints. To characterize them, in some cases we need additional

information on the short term history of the start and stop variables, resulting in
the use ofMR i andMO i instead of N iup and N idown .
Table 3.2 shows how constraints (3.18)-(3.23) force the variables start ij and

stopij to take their correct values, depending on the x ij variables. �e four possible
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x ij−1 x ij eq. (3.18) eq. (3.19) eq. (3.20) star t ij eq. (3.21) eq. (3.22) eq. (3.23) stop ij
0 0 ≥ 0 ≤ 0 ≤ 1 0 ≥ 0 ≤ 0 ≤ 1 0

0 1 ≥ 1 ≤ 1 ≤ 1 1 ≥ −1 ≤ 0 ≤ 0 0

1 0 ≥ −1 ≤ 0 ≤ 0 0 ≥ 1 ≤ 1 ≤ 1 1

1 1 ≥ 0 ≤ 1 ≤ 0 0 ≥ 0 ≤ 1 ≤ 0 0

Table 3.2: �e construction of start and stop variables from consecutive x variables

combinations of x ij and x ij−1 result in the given right hand sides of the three start
and three stop constraints. �ese right hand sides determine the correct values for

start ij and stopij , when we also respect the binary requirements of Equations (3.24)
and (3.25).

Operational constraints

Contrary to other electricity generators (especially compared to the operation of

a power plant) the electrical output of a microCHP is completely determined by

the decisions to switch the appliance on or o�; an operating range does not exist.

Given a feasible sequence of binary decision variables x, the appliance speci�c
constraints describe a direct and unique output for the microCHP. To force x to
be a feasible sequence we have to respect the minimum runtime and minimum

o ime requirements, as well as the correct functioning of the heat bu�er. �e

minimum runtime constraint demands that the microCHP has to run for at least

MR i consecutive intervals, once a choice is made to switch it on. �e minimum
o ime constraint demands that the microCHP has to stay o� for at least MO i
consecutive intervals, once a choice is made to switch it o�. As we have mentioned

before in Section 3.1.2, it is completely natural to demand that N iup ≤ MR i and
N idown ≤ MO

i .

�e minimum runtime constraint can be modelled by (3.26), which forces the

decision variable x ij to be 1 if one start occurs in the previous MR i − 1 intervals,
since x ij is only allowed to take the values 0 and 1. Likewise, equation (3.27) forces
the decision variable x ij to be 0 if one stop occurs in the previousMO i − 1 intervals.
Again, if needed the given start and stop variables from the past (following from
the given x values) are used.

x ij ≥
j−1
∑

k= j−MR i+1
start ik ∀i ∈ I,∀ j ∈ J (3.26)

x ij ≤ 1 −
j−1
∑

k= j−MO i+1
stopik ∀i ∈ I,∀ j ∈ J (3.27)

Note, that a�er a start of the microCHP, it takes at leastMR i intervals before a stop
may occur. Since furthermore between two consecutive starts one stop occurs, we

never can have more than one start inMR i consecutive intervals. Similar reasoning
learns that we never can have more than one stop inMO i consecutive intervals.
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To specify the constraints resulting from the heat demand, we introduce vari-

ables hl ij specifying the heat level in the bu�er of house i at the beginning of interval
j. For the �rst interval, this level is given by the initial heat level BL i (equation
(3.28)). �e heat demand of house i is characterized by a heat demand vector
H i = (H i1 , . . . ,H iNT ). Next to the parameter BL

i to describe the initial heat level in

the bu�er, a value BC i to describe the bu�er capacity and a value K i to describe
the heat loss parameters for the bu�er are used. �is heat loss is assumed to be

constant for all intervals, since we assume that the temperature range in which the

heat bu�er is operated is not too large. �e change of the heat level in interval j is
given by the amount of generated heat (g ij) minus the heat demand (H ij) and the
loss parameter (K i) (see equation (3.29)). Finally, the capacity of the heat bu�er has
to be respected (equation (3.30)).

hl i1 = BL i ∀i ∈ I (3.28)

hl ij = hl ij−1 + g ij−1 −H ij−1 − K i ∀i ∈ I,∀ j ∈ J ∖ {1} ∪ {NT + 1} (3.29)

0 ≤ hl ij ≤ BC i ∀i ∈ I, j ∈ J ∪ {NT + 1} (3.30)

Cooperational constraints

�e equations (3.26)-(3.30) give the constraints for a feasible domestic decision

sequence. �e total electricity output of the group of microCHPs is speci�ed

by lower and upper bound vectors P l ower = (P l ower1 , . . . , P l owerNT ) and Pupper =
(Pupper1 , . . . , PupperNT ) for the production pattern of the �eet. �e constraints on the

global production pattern can be formulated as follows:

N
∑
i=1
e ij ≤ P

upper
j ∀ j ∈ J (3.31)

N
∑
i=1
e ij ≥ P l owerj ∀ j ∈ J . (3.32)

In the above form, constraints (3.31) and (3.32) are hard constraints and demand

that the total production aggregates to an amount that lies between the lower and

upper bounds. �ese constraints are used when the optimization objective is to

maximize pro�t on an electricity market as in the pro�t maximization problem

de�ned in Section 3.2.4.

When we relax this problem to the deviation minimization problem of �nding

a total production that is the closest to the given bounds, we need slightly modi�ed

constraints. For these constraints we introduce slack and excess variables sl j and
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ex j :

N
∑
i=1
e ij − ex j ≤ P

upper
j ∀ j ∈ J (3.33)

N
∑
i=1
e ij + sl j ≥ P l owerj ∀ j ∈ J (3.34)

ex j ≥ 0 ∀ j ∈ J (3.35)

sl j ≥ 0 ∀ j ∈ J . (3.36)

�e excess and slack variables account for the deviation from the range [P l owerj , Pupperj ]

instead of the deviation from the points P l owerj and Pupperj . Equations (3.35) and

(3.36) are necessary to prevent that values within this range are pulled towards the

boundaries.

Objectives and optimization problems

In the previous all constraints for the two planning problems have been speci�ed.

Now we deal with the objective functions. For the pro�t maximization problem

we have given the electricity prices on an electricity market, speci�ed by a price

vector π = (π1 , . . . , πNT ). �e objective function is to maximize the pro�t on this
electricity market:

zmax = max
NT
∑
j=1

N
∑
i=1

π je ij . (3.37)

For the deviation minimization problem the objective is given by the minimiza-

tion of the total slack and excess:

zmin = min
NT
∑
j=1
sl j + ex j . (3.38)

�is objective demands the slack and excess variables to take their minimal values

such that (3.33) and (3.34) are respected.

�e pro�t maximization problem (Maximizing the pro�t on an electricity mar-
ket) is now de�ned by objective (3.37) and constraints (3.15)-(3.32). �e deviation
minimization problem (Minimizing the deviation from the given bounds on aggre-
gated electricity output) is given by objective (3.38) and constraints (3.15)-(3.30)
and (3.33)-(3.36). �ese optimization problems are studied in more detail in the

following sections.

�e size of the problem is determined by the planning horizon, speci�ed by

the number of intervals NT , and the number of houses forming the �eet, denoted
by N . �e ILP problem has N × NT binary decision variables x ij and O(N × NT)
constraints and depending variables, and the existence of constraints in both time

and space clearly shows the two-dimensionality of the problem.
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3.3.2 benchmark instances

�e input of the microCHP planning problem consists of numbers specifying the

dimensions of the problem and data specifying characteristic behavior within the

problem. We use di�erent sets of benchmark instances to test varying solution

methods for the problems that we have described in the previous subsection. At

this point we give an overview of these benchmark sets and we indicate the main

di�erences between them. First we give a global comment on the dimensions of

the problem and on the type of data that is used. �en we describe the di�erent

benchmark sets.

Dimensions

As mentioned before, the two dimensions of the problems are time and space.

Although they are both of importance in the structure of the problem, the nature of

these dimensions in practice may ask for a slight focus shi� towards space (i.e. the

number of microCHPs in the problem).

�emicroCHPplanning problem concentrates on planning for a time horizon of

one day, i.e. 24 hours. Since short term electricity markets work with bidding blocks

of one hour in �e Netherlands [2] the interval length of the planning problem

should comply to this hourly basis. According to [131] an interval length of 5minutes

“seems a reasonable compromise to give good accuracy with reasonable data volume”,

for the evaluation of electrical on-site generation. �is interval length of 5 minutes

is used to allow for a large variation that is usually present in the electrical load

pro�les of houses. For the planning problem however, the electrical production of

the microCHP is more stable in its output, due to the requirement to run for at least

a minimum timeMR, which is typically set to half an hour. �is indicates that the
planning problem itself does not need to deal with variable load and accompanying

�uctuating electricity import/export. If measurement technology is available to

account for all locally generated electricity, as mentioned in the business case in

Section 2.2.2, it is possible to auction all locally generated electricity on the market,

instead of auctioning the measured import/export of houses. �e heat demand that

needs to be ful�lled is predicted in hourly intervals. In this setting of hourly heat

demand and half hourly generation requirements the need for an interval length of

5 minutes may be relaxed and half an hour seems amore appropriate interval length.

Since the heat demand is predicted in hourly intervals, we also study instances with

an hourly interval length. To allow for some �exibility in the local assignment of

production, we also use instances with an interval length of 15 minutes. �is gives

the planner more opportunities to set the starting point of a microCHP run and

more possibilities to apply longer runs. Based on the above we use three di�erent

interval lengths in the planning problem: 15 minutes, 30 minutes and 60 minutes.

�ese interval lengths correspond to NT = 96, NT = 48 and NT = 24 intervals.
�e number of microCHPs in the problem is subject tomore variation. To verify

the functional correctness of the di�erent solution methods and compare them to

each other, instances with a small number of microCHPs are used (i.e. N ≤ 10).
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However, for practical use a solution method needs to be scalable. �erefore we

also use instances where we have N = 25, N = 50, N = 75 and N = 100 to analyze

scalability aspects of the di�erent methods, and sizes N = 1000 to N = 5000 to

further evaluate promising methods. Instances where N ≤ 10 are referred to as

small instances; instances where 10 < N ≤ 100 as medium instances; and instances

where N > 100 as large instances.

Data

An instance creation tool has been designed that works independently of the already

speci�ed choices for N and NT in the previous paragraph and, thus, can be used to
generate a wide range of instances for themicroCHP planning problem. �e speci�c

characteristics of instances of the planning problem are described by several param-

eters, which all have been introduced in the ILP formulation. �ese parameters

can be divided into appliance speci�c parameters and problem de�ning parameters.

For the appliance speci�c parameters we usually use values corresponding to the

following setting. �e microCHP behaviour is modelled according to the use of a

Stirling engine developed by Whispergen [15, 43]. However, other microCHPs can

be modelled as well. �e minimum runtime and the minimum o ime are both set

to half an hour. Startup and shutdown periods are 12 minutes and 6 minutes respec-

tively; the electrical output is assumed to increase/decrease linearly in these periods

to/from the maximum generation of 1 kW of electrical energy and 8 kW of heat.

�e values for all parameters are chosen such that they are consistent with these

periods (e.g. N iup = ⌈ 12i l ⌉, where i l is the interval length in minutes). �e vectors
representing the loss of heat generation and the additional heat generation are cal-

culated based on the losses/gains resulting from the 12/6 minutes startup/shutdown

periods. We model a heat bu�er by specifying a certain range [BLL i , BUL i] of the
heat capacity HC i of this bu�er; the heat level should stay between the lower heat
level BLL i and the upper heat level BUL i . �is interval may be smaller than the
actual capacity of the heat bu�er: BC i = BUL i − BLL i ≤ HC i . By demanding that
the planning stays to this tightened range we leave some �exibility to accommodate

for minor �uctuations in realtime. As standard heat bu�er we reserve 10 kWh,

which corresponds to a heat bu�er of around 150 l [79].

�e heat demand for the houses is usually given by an hourly prediction of heat

usage [29]. In general, we assume that the heat demand consists of central heating

and hot tap water demand. �is heat pro�le of a house during winter has two

peaks1, typically one in the morning and one in the evening. To o�er benchmarking

instances that can be used by other planning methods, we generate reproducible

hourly heat demand data. �e creation of this heat demand data is explained in

detail in Appendix A.�e idea of this data creation tool is that we de�ne two periods

(one between 7 a.m. and 11 a.m. and one between 6 p.m. and 10 p.m.), during which

two peak demands occur. In a winter day the average daily heat demand is assumed

1Derived from gas usage patterns in�e Netherlands
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small instances

production pattern variant 1 2 3 4 5 6 7 8 9 10

lower bound (%) 0 0 0 0 0 0 0 10 20 tight

upper bound (%) 100 90 80 70 60 50 40 100 100 tight

medium instances

production pattern variant 11 12 13 14

lower bound (%) 0 10 20 25

upper bound (%) 75 50 40 35

Table 3.3: Electricity production bounds, based on percentages of possible electricity

production

to be 54 kWh, which is typical for a cold day in�e Netherlands. �erefore, we aim

to create heat demand data that has an average daily demand of 54 kWh.

Another important characteristic of an instance is its de�nition of the desired

production bounds P l owerj and Pupperj . We use two ways of de�ning these total

production bounds.

For the pro�tmaximization problem, we derive P l owerj and Pupperj using constant

percentages of the total maximally possible electricity output of the group of houses.

�e used percentages are given in Table 3.3. �e last variant (variant 10) for the small

instances gives the tightest combination of lower and upper bounds: the highest

lower bound for which a feasible solution is found to the pro�t maximization

problem (variant 1, 8 or 9) is combined with the lowest upper bound for which a

feasible solution is found (variant 1-7). For the medium instances we use bounds,

speci�ed by the percentages in Table 3.3. �e large instances are described in more

detail in Chapter 6.

For the pro�t maximization problem we use �at bounds, which correspond

to the objective of minimizing production peaks and thus to the requirements of

stability and reliability. For the deviation minimization problem we use �uctuating

electricity demand patterns, to see whether the di�erent methods are able to fol-

low such �uctuating bounds on the total production. �ese �uctuating electricity

bounds have two properties. First they are subject to some kind of variation. Sec-

ondly, the upper and lower production bounds are relatively close to each other.

�is indicates that we concentrate more on the ability to follow a predetermined

total electricity pattern and less on the �exibility of total generation in certain time

intervals. Production bounds that ful�ll both properties are created by making use

of curves that result from a sine function plus some constant for both the upper and

the lower production bounds. �e variability of the desired pattern is determined

by the sine curve. �e relative closeness of these bounds results from the fact that

we use the same sine function for both types of bounds and the constants are chosen

such that the total maximally and minimally possible production coincides with

the bounds on the total desired production. An explanation in more detail is given

in Section 3.7.4.
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l 1 2 3 4 5 6 7 8 9 10 µ
k
1 1.147 1.092 − − − − − − − 1.092 1.110

2 1.236 1.208 1.016 1.016 1.016 1.016 − − − 1.016 1.075

3 1.197 1.197 1.106 1.106 1.002 − − − − 1.002 1.102

4 1.183 1.164 1.128 1.114 1.021 1.021 − 1.009 1.009 0.949 1.066

5 1.164 1.149 1.120 1.060 1.060 − − 1.118 − 1.023 1.099

6 1.163 1.150 1.130 1.092 1.048 1.027 − 1.139 − 1.021 1.096

7 1.156 1.145 1.137 1.109 1.069 0.972 0.925 1.150 − 0.924 1.065

8 1.156 1.145 1.130 1.114 1.080 1.032 0.919 1.152 1.069 0.902 1.070

9 1.153 1.143 1.121 1.098 1.072 0.993
[2] − 1.150 1.113 0.976

[5]
1.091

10 1.176 1.162 1.143 1.122
[1]

1.095 1.037
[3]

0.948
[4]

1.173 1.028 0.945 1.083

µ 1.173 1.156 1.115 1.092 1.051 1.014 0.931 1.127 1.055 0.985

[1] terminated by solver, upper bound 1.144

[2] terminated by solver, upper bound 1.058

[3] terminated by solver, upper bound 1.075

[4] terminated by solver, upper bound 0.989

[5] terminated by solver, upper bound 0.999

Table 3.4: Objective value for instances I(k, l)

Benchmark instances

For the small and medium instances a set of 200 heat demand pro�les is generated

using Algorithm 5. Using this heat demand set, a subset of these demand pro�les

is selected to participate in the di�erent problem instances. �is selection is sim-

ply based on the order in which the houses appear in the creation process of the

heat demand. �e notation I(k, l) is used to represent an instance with N = k
microCHPs and production pattern variant l . For the small instances that aim at
pro�t maximization for the VPP k, l ∈ {1, . . . , 10} and for the medium instances

k ∈ {25, 50, 75, 100} and l ∈ {11, . . . , 14}. For example, I(3, 1) is a small instance,
consisting of 3 microCHPs and total production bounds of 0% and 100% (meaning

that a completely independent planning for the 3 microCHPs can be made).

For the large instances an initial set of 5000 heat demand pro�les is created.

�e accompanying choice for production bounds is given in Chapter 6.

3.3.3 ilp results

For the ILP formulation we use the small instances to give an indication of the

practical computational time that is needed to �nd optimal solutions. �e ILP

formulation is modelled in AIMMS modelling so�ware using the commercial

CPLEX solver (version 12.2).

�e normalized objective values for the instances I(k, l) (i.e. the objective
values divided by the number of houses), calculated by the ILP approach, are given

in Table 3.4. If an instance does not have a feasible solution this is denoted by a

dash (−).

Some of the instances with a large number of houses and tight production

pattern constraints were terminated by the ILP solver, due to slow convergence

towards the best found solution. For these instances, where the ILP solver did not

�nd the optimal solution, the upper bound on the objective, given by the solver,
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l 1 2 3 4 5 6

k
1 0.08 0.06 − − − −
2 0.22 0.31 0.70 0.48 0.51 0.95

3 1.33 1.41 1.75 2.50 1.17 −
4 1.34 1.81 2.45 2.05 8.27 7.36

5 5.00 6.06 9.33 45.28 57.41 −
6 6.78 4.88 20.06 38.64 221.17 254.84

7 7.89 16.77 25.11 47.64 839.84 6373.31

8 27.36 43.89 60.72 109.48 396.69 3302.30

9 129.39 200.31 332.52 2382.53 2858.05 7143.67∗
10 461.98 1174.94 873.14 6879.08∗ 17285.17 6704.20∗
µ 64.14 145.04 147.31 1056.41 2407.59 3398.09

σ 137.81 348.21 275.37 2185.10 5330.13 3087.73

l 7 8 9 10 µ σ
k
1 − − − 0.08 0.07 0.01

2 − − − 1.00 0.60 0.28

3 − − − 1.22 1.56 0.46

4 − 5.98 2.78 9.86 4.66 3.05

5 − 28.19 − 467.30 88.37 155.84

6 − 25.52 − 2326.13 362.25 748.13

7 3052.55 9.75 − 1745.06 1346.44 2037.84

8 9918.91 39.03 97.66 17999.19 3199.52 5753.94

9 − 130.49 1270.13 16265.91∗ 3412.56 5016.03

10 8648.84∗ 79.89 1765.80 5757.88 4963.09 5080.93

µ 7206.77 45.55 784.09 4457.36

σ 2982.89 41.38 755.25 6570.37

Table 3.5: Computational time (in seconds) for instances I(k, l)

is also presented below the table. �is gives an indication that the ‘large’ small

instances are close to the largest ones that can be solved to optimality by the ILP

approach. Note that the upper bound of I(10, 4) can be lowered by looking at the
objective value of I(10, 3). �e average objective values show that the tighter the
�eet constraints are, the less money can be earned.

In Table 3.5 the computational times are given, where we only show the times

corresponding to the feasible instances. A star (*) denotes an instance that is

terminated by the solver premature, without determining the optimality of the

solution. �e computational times grow extremely fast if the number of houses

grows and/or the production pattern bounds get more tight. Also note the large

variance in these times under a �xed number of houses or a �xed production pattern

variant.

3.3.4 conclusion

�e Integer Linear Programming formulation that is presented in this section gives

a clear overview of the dependencies in time and the dependencies in space (mi-

croCHPs). �e discretization of the problem is modelled such, that the granularity

of the time horizon can be chosen; the continuous variant of the problem is ap-

proached if the interval length goes to 0.

However, solving a �ne-grained problem instance (to optimality) is out of

question. Results are presented for this formulation for small instances, with a
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limited number of microCHPs (N ≤ 10) and a relatively large interval length of one

hour. �ese results are used as a comparison benchmark for heuristics.

3.4 Dynamic Programming

In the previous section we have given an ILP formulation of themicroCHP planning

problem, which gives an intuitive model of the underlying problem and gives us

basic insights into the di�culties of the problem. To improve on the computational

speed of �nding a solution we develop di�erent heuristics. An interesting approach

for these heuristics is the use of dynamic programming.

Dynamic programming is one of the techniques that is applied to large opti-

mization problems that are structured in such a way, that they can be divided into

subproblems that are easier to solve. In Section 3.2.1 we presented the Held-Karp

algorithm; this is a good example of a dynamic programming method, since it

possesses the main ingredients of dynamic programming. In general, a dynamic

programming method consists of so-called phases, which are ordered sets of states.

For each state in a phase several decisions may be possible, all of which indicate a

transition from this state to a state in the successive phase. A cost is associated with

each decision; this cost only depends on the current state and the corresponding

state transition and is independent of previous states or decisions. �is means that

all information that is necessary to derive this cost is available in the description

of the state. Furthermore, each state has a certain value. �is value represents the

optimal sum of costs leading to the state, either calculated starting from the �rst

phase or from the �nal phase. �e �rst way of value calculation is called forward

dynamic programming and the latter is called backward dynamic programming.

�e nice property of dynamic programming is that the value of each state has to

be calculated only once. In an iterative way all phases are visited in the order they

appear (forwards or backwards) and all states are updated using the values of the

states in the neighbouring phase and the costs associated with the decisions via a

recursive function.

In the Held-Karp algorithm the phases are determined by the size of the subsets

of cities, and the state is given by a subset of cities and the city that is currently

visited as the last of these cities. Figure 3.13 shows the structure of the state space

belonging to an instance of 4 cities numbered 1 to 4. One can easily see that a

state transition only occurs between states of neighbouring phases. �e Held-Karp

algorithm updates all phases subsequently in the way we explained in Section 3.2.1.

An important fact to remember is that the state (S , j) allows any order of visiting the
cities in S as long as we end up in j, which reduces the amount of states enormously
and also shows the independence between a decision that has to be made for this

state and the historic decisions leading to this state. �is shows that it is extremely

important to de�ne relevant states in which as much information is compressed as

possible.

In the following we use these requirements for a dynamic programmingmethod

to develop a basic dynamic programming algorithm that solves the microCHP plan-
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{2}, 2

{3}, 3

{4}, 4

{23}, 2

{23}, 3

{24}, 2

{24}, 4

{34}, 3

{34}, 4

{234}, 2

{234}, 3

{234}, 4

{1234}, 1

phase 1 phase 2 phase 3 phase 4

Figure 3.13: �e structure of dynamic programming by example of the Held-Karp

algorithm

ning problem exactly. We formulate a state description that compresses historic

decision paths, hereby reducing the state space enormously. Although we do not ex-

pect that this basic dynamic programmingmethod is applicable to real life problems,

it forms the heart of a local search method that is explained in Section 3.5.

3.4.1 basic dynamic programming

Before we explain our choice for the description of a state, we �rst observe the

following. Since the problem consists of N microCHPs and NT time intervals we
have 2NNT combinations of possible binary decisions. A straightforward choice for

a state description is to denote the state by a matrix A =
⎛
⎜
⎝

a11 . . . a1NT
⋮ ⋱ ⋮

a i1 . . . a iNT

⎞
⎟
⎠
or

a matrix B =
⎛
⎜
⎝

b11 . . . b1 j
⋮ ⋱ ⋮

bN1 . . . bN j

⎞
⎟
⎠
consisting of all made decisions a i j = b i j = x ij .

Matrix A belongs to a phase that is based on the number of microCHPs (for a given
microCHP a complete decision path is given) and matrix B to a phase that is based
on time (for a given interval the decisions for all microCHP are given). A natural

choice for recursion is to incrementally add a decision path for a microCHP to A to
create states in the next phase or to add all decisions for the next time interval to B.
�is leads toO(2N×NT ) possible states.

�e�rst choice that we have tomake in order to specify a state is to determine the

basis for the di�erent phases: do we follow the idea of matrix A or B? Since we deal
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with a two-dimensional problem we essentially have the choice between two phase

indicators: time and space. If the choice would fall onto the latter one, this would

make the description of a state complicated. In this case a state transition should

describe the decisions for one microCHP for the complete time horizon. �is is not

easily represented in another way than by using a vector of length NT . A state could
be described by the total production of microCHPs 1, . . . , i for the NT intervals,
which does not improve on the order of magnitude of the states. Furthermore,

the choice for using space as a phase descriptor does not naturally correspond to

the feasibility checks that have to be performed in order to see whether a state

transition does not violate any appliance, operational or cooperational requirement.

�e appliance and operational constraints namely depend strongly on the short term

behaviour in time, whereas the cooperational requirements cannot be guaranteed

until all microCHPs are planned. Because of these reasons we focus on time as our

phase descriptor. In the following a description is given of the state representation,

where we �rst focus on a single microCHP and then combine them into a dynamic

programming method that deals with a group of microCHPs.

Dynamic programming for a single microCHP

A disadvantage of the straightforward state representation by matrix B is that it
takes the complete decision history explicitly into account. Since rows in B are not
mutually exchangeable due to di�erent underlying heat demand (or possibly di�er-

ent generator types) we cannot reduce the state B by compressing rows. However,
we can compress columns. To see this we focus on a single row of matrix B, i.e. the
operation of a single microCHP appliance from the start of the time horizon up to

interval j. Figure 3.14 shows two possible representations of decision paths until
interval j: this corresponds to states (0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1) and
(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1) in B. Of course a decision for interval j

0

1

1 j NT

time period

x j

4

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

6

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

3

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ

0

1

1 j NT

x j

5

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

5

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

3

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ

Figure 3.14: Two possible representations of decision paths until interval j

is in�uenced by the current operation of the microCHP, i.e. the information that the

appliance is currently running for 3 intervals. However, the explicit description of

the complete run history before the current run is unnecessary. �e total production

of this history namely only depends on the amount of intervals that the appliance



72

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

is planned to run and the startup and shutdown behaviour. As long as production

runs ful�ll the appliance speci�c and operational requirements, historic production

can be described by the number of completed runs and the total amount of intervals

in which the microCHP is on. �is historic production of two decision paths is

equal when the number of completed runs is equal and when the total amount of

intervals in which themicroCHP is on is equal. �is is the case in Figure 3.14 and the

state space can be reduced by merging (0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1)

and (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1) into one state.

Following the above idea, we describe a state σ ij of a single microCHP i by a
3-tuple (Aij , B ij ,C ij), which represents the situation at the begin of interval j. More
precisely, we have:

• Aij , expressing the number of consecutive intervals that the on/o� state of the
microCHP is unchanged looking back from the start of the current interval j
(positive values indicate that the microCHP is running and negative values

indicate that the microCHP is o�);

• B ij , expressing the total number of intervals the microCHP has been running
from the beginning of the planning period until the start of the current

interval j;

• C ij , expressing the number of runs of the microCHP which have already been
completed.

�enumber of possible states per phase for a given house i is bounded byNT 3. In the
DP we get NT + 1 phases corresponding to the start of the intervals j = 1, . . . ,NT + 1,
where the �nal phase corresponds to the state at the end of the planning horizon
(a�er interval NT). �e two possible representations of decision paths from Figure
3.14 are represented by state (3, 13, 2). An example of the possible decisions is given

in Figure 3.15, where it appears to be infeasible to switch o� the appliance.

. . .

. . .

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

. . .

. . .

(3, 13, 2)

. . .

. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

. . .

(4, 14, 2)

. . .

. . .

(−1, 13, 3)

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. . .

. . .

(x j = 1)
37

−∞

(x j = 0)

j − 1 j j + 1

Figure 3.15: State changes from (3, 13, 2) with corresponding costs

We apply backwards dynamic programming to the formed state space. For

each state σ ij in phase j a value function F ij(σ ij ) is introduced, which expresses the
maximal pro�t which can be achieved in the intervals j, . . . ,NT if the microCHP
is in state σ ij at the begin of interval j. �e calculation of F ij(σ ij ) depends on the
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possible actions in state σ ij and the values of the value function for some states in
phase j + 1. �e possible actions are to either have the on/o� state unchanged or to
change it. If we leave the state unchanged (no start or stop) we get as new state in

interval j + 1:

σ̂ ij ∶=
⎧⎪⎪
⎨
⎪⎪⎩

(Aij + 1, B ij + 1,C ij) if Aij > 0
(Aij − 1, B ij ,C ij) if Aij < 0.

If we change the on/o� state, we have:

σ̌ ij ∶=
⎧⎪⎪
⎨
⎪⎪⎩

(−1, B ij ,C ij + 1) if Aij > 0
(1, B ij + 1,C ij) if Aij < 0.

�is leads to the following recursive expression for F ij(σ ij ):

F ij(σ ij ) ∶= max{c ij(σ ij , σ̂ ij ) + F ij+1(σ̂ ij ), c ij(σ ij , σ̌ ij ) + F ij+1(σ̌ ij )},

where c ij(σ , σ ′) denotes the cost associated with the choice corresponding to the
transition from σ to σ ′. �e calculation of these costs is similar to the calculation of
the values e ij used in Section 3.3 plus some feasibility checks on the state transitions
and can be done in constant time. If a decision is infeasible we set the cost c ij(σ , σ ′) =
−∞. When we de�ne F iNT+1(σ iNT+1) = 0 for all possible states σ iNT+1 in phase NT + 1
we can recursively calculate F i1 (σ i1 ) and deduce a corresponding optimal decision
vector x i . Since there are O(NT 3) state tuples and there are NT time intervals
to evaluate, the dynamic programming approach of the single house model has

runtimeO(NT 4).

Dynamic programming of a group of microCHPs

As stated before, the combination of the dynamic programming formulations for

di�erent microCHPs cannot be merged, since local information remains to be

extractable. A state in the dynamic programming formulation for the group of

houses has to be speci�ed by a vector of states for the individual houses; σ j ∶=
(σ 1j , . . . , σNj ). From each state σ j we have 2N possible actions that can be taken
(existing of N binary choices to leave the state unchanged or not in each house).
Note that a state transition is only feasible if, next to the individual feasibility

checks on the house states, the state vector (of the combined houses) also ful�lls

the cooperational constraints of the given interval.

To formalize the dynamic programming for the group of houses, we denote by

D j(σ j) the maximal cooperational pro�t that can be achieved in the intervals
j, . . . ,NT if, at the begin of interval j, the state of house i is given by σ ij , for
i = 1, . . . ,N . Due to the cooperational constraints a state transition from σ j to
σ ′j may not be allowed even if all individual state transitions (σ ij , σ ′ij ) are allowed
for the individual houses. �erefore we cannot simplify the dynamic programming
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by calculating the individual house dynamic programming formulations indepen-

dently and merging the results. So we need to calculate the complete dynamic

programming, which has an exponential runtime of O(NT 3N+1), since the state
space explodes by the possible combinations of houses in each phase of the dynamic

programming (O(NT 3N)).

3.4.2 results

�e dynamic programming methods for the single house and for the group of

houses are implemented in C++. For the group of houses we make use of an SQL

database to store the produced values for all states, due to the exponential increase

in the number of states.

Results for small instances

Table 3.6 shows the results for the small instances regarding pro�t maximization.

�e instances again are represented by the number of microCHPs and the variant

describing the total production bounds. We give the (optimal) objective values for

pro�t maximization zmax (divided by the number of houses N), the computational
time in seconds and the memory usage of the database (in MB). �e table clearly

shows the exponential growth in the state space, which is visible in the memory

usage and the increase in computational time.

�e results of this basic dynamic programming approach are used to validate the

results of the ILP model. �e same objective values result from both methods in all

cases that were not terminated by the ILP solver, which indicates that the planning

problem is correctly implemented. In addition, the basic dynamic programming

formulation gives the optimal solutions to the prematurely terminated instances of

the ILP formulation. In two cases both solutions are equal; for the three remaining

instances, the optimal solution lies between the upper bound and the current

solution of the ILP solver.

3.4.3 conclusion

�e basic dynamic programming formulation gives a structured description of

the state space of the microCHP planning problem. A state consists of a vector

of individual microCHP states, which in their turn are 3-tuples representing the

historic decision path until a given time interval.

Using this representation, small instances can be solved to optimality. �e

results of the ILP formulation are validated and prematurely interrupted solutions

are improved. However, the computational times and memory usage indicate that

solving realistically sized instances by the DP approach is intractable in practice.
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instance solution instance solution

N variant
zmax
N time (s) mem. (MB) N variant

zmax
N time (s) mem. (MB)

1 1 1.147 0.015 - 6 10 1.021 256.013 18.43

1 2 1.092 0.015 - 7 1 1.156 1167.600 59.70

1 10 1.092 0.016 - 7 2 1.145 1173.185 59.70

2 1 1.236 2.280 0.03 7 3 1.137 1187.634 59.70

2 2 1.208 2.745 0.03 7 4 1.109 1140.431 59.70

2 3 1.016 3.045 0.03 7 5 1.069 1089.978 59.70

2 4 1.016 2.994 0.03 7 6 0.972 932.687 59.66

2 5 1.016 3.147 0.03 7 7 0.925 867.137 59.47

2 6 1.016 2.777 0.03 7 8 1.150 1117.568 59.70

2 10 1.016 2.695 0.03 7 10 0.924 837.076 59.47

3 1 1.197 3.875 0.12 8 1 1.156 5937.227 285.87

3 2 1.197 3.474 0.12 8 2 1.145 5849.868 285.87

3 3 1.106 3.813 0.12 8 3 1.130 5711.468 285.87

3 4 1.106 3.434 0.12 8 4 1.114 5762.172 285.87

3 5 1.002 3.569 0.12 8 5 1.080 5676.447 285.87

3 10 1.002 3.240 0.12 8 6 1.032 5344.593 285.87

4 1 1.183 13.150 0.79 8 7 0.919 4596.758 285.42

4 2 1.164 13.895 0.79 8 8 1.152 5679.480 285.87

4 3 1.128 13.027 0.79 8 9 1.069 5337.957 285.64

4 4 1.114 13.020 0.79 8 10 0.902 3864.537 285.19

4 5 1.021 12.173 0.79 9 1 1.153 36806.901 1762.07

4 6 1.021 12.045 0.79 9 2 1.143 36385.480 1762.07

4 8 1.009 11.000 0.75 9 3 1.121 37538.051 1762.07

4 9 1.009 10.780 0.75 9 4 1.098 35902.998 1762.07

4 10 0.949 9.753 0.75 9 5 1.072 34578.857 1762.07

5 1 1.164 35.890 2.39 9 6 0.999 32823.057 1761.94

5 2 1.149 35.779 2.39 9 8 1.150 34938.175 1762.07

5 3 1.120 35.784 2.39 9 9 1.113 31966.586 1761.40

5 4 1.060 34.148 2.39 9 10 0.976 28798.542 1761.27

5 5 1.060 34.720 2.39 10 1 1.176 372792.485 15458.30

5 8 1.118 32.564 2.38 10 2 1.162 373217.551 15458.30

5 10 1.023 31.638 2.38 10 3 1.143 378439.755 15458.30

6 1 1.163 293.977 18.44 10 4 1.122 378338.190 15458.30

6 2 1.150 305.999 18.44 10 5 1.095 361314.246 15458.28

6 3 1.130 295.154 18.44 10 6 1.044 345850.900 15458.19

6 4 1.092 288.180 18.44 10 7 0.956 311694.388 15452.69

6 5 1.048 275.603 18.44 10 8 1.173 365599.919 15458.30

6 6 1.027 267.682 18.43 10 9 1.028 301642.878 15443.78

6 8 1.139 284.076 18.44 10 10 0.945 236609.514 15438.16

Table 3.6: Results for the basic dynamic programming method

3.5 Dynamic programming based local search

In the previous section the basic dynamic programming approach is introduced.

�is method gives a fast technique for solving single microCHPs, but the computa-

tional e�ort ‘explodes’ when the number of microCHPs increases. In this section

we develop a local search based heuristic which uses the single microCHP DP as a

subroutine.

In case we optimize for the electricity market (i.e. maximize the pro�t), the

dynamic programming method for a single microCHP can be seen as a function f i
on the price vector π:

f i(π) → x i . (3.39)

�e function in Equation (3.39) gives an optimal local planning for the single house

and can be calculated in runtimeO(NT 4), given the electricity market price vector
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π (and of course the data of house i). However, we also may apply this function
to any other vector that di�ers, except from its length, from π. In this way the
function might not return the optimal decision path for the house in relation to the

market prices, but it still returns a locally feasible path, satisfying appliance speci�c

and operational constraints. We might want to use such arti�cial prices to explore

di�erent operational decision paths for individual microCHPs.

�is observation forms the basis of a local search method. In the following we

explain the separation of the two dimensions we are dealing with and propose a

method for which the running time can be controlled to some extent.

3.5.1 separation of dimensions

Similar to the function f i for microCHP i, the dynamic programming method for
the group of houses can be seen as a function d on the price vector π:

d(π) → (x̃ 1 , . . . , x̃N).

�is function d(π)maximizes a certain objective function and outputs N vectors
consisting of the planning in the N corresponding houses. We call these vectors
x̃ i the optimal decision paths. Whereas f i(π) �nds a solution in polynomial time,
d(π) needs exponential time to be evaluated. Since this is not feasible in practice, a
heuristic is developed to �nd a solution to the microCHP planning problem that is

both feasible and, hopefully, close to the optimum solution, and can be found in

reasonable time.

Due to the cooperational restrictions on the total electricity production we can-

not (in general) solve the function d by individually solving N functions f 1 , . . . , f N
in parallell for the price vector π. In general d(π) ≠ ( f 1(π), . . . , f N(π)); however,
we presume that there exist some vectors v1 , . . . , vN such that d(π) = ( f 1(v1), . . . ,
f N(vN)). In this case each f i(v i) forces each corresponding microCHP to plan
the production that is found in the optimal solution according to d(π) (i.e. the
decision paths x̃ i).
In the following we discuss the assumption that we can �nd a vector v i with

f i(v i) = x̃ i for each microCHP i, i.e. we want to show that any possible individual
production plan can be reached by cleverly designing the vector v i . For a dynamic
programming formulation in which the choice for the cost that is associated with

each state transition is completely free, it is obvious that any decision path can be

constructed, for instance by letting all state transitions which are not in the desired

solution have a cost of −∞ (in a maximization problem) and 1 otherwise.

In our case however the cost determination is prescribed by the instance. �e

cost is determined by amultiplication of the arti�cial price vector v i and the electric-
ity production that belongs to a state transition (and is −∞when the state transition

is infeasible). �is means that we cannot de�ne state transition costs individually,

but we must focus on all possible state transitions for a certain phase simultaneously.

�is indicates that there might be a chance that desired decision paths are prevailed

by other paths and might never be found, if we only have the option to steer via

v i . We show that this is not the case. Note that the cost of −∞ of infeasible state
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transitions (heat demand violation, runtime/o ime violations) can be neglected in

the following reasoning, since they can never outperform the decision path x̃ i in
the solution of d(π). Let ẽ i be a vector of electricity production corresponding to
the optimal solution x̃ i of d(π). Since ẽ i results directly from the decision path x̃ i ,
we want to force this path to be taken by focusing on the electrical output ẽ i only.
�is vector has a unique structure of zeroes, possibly interrupted by positive and/or

negative values. If the electricity output in ẽ i is always nonnegative, then we could
de�ne v i

∗
simply to be:

ṽ ij =
⎧⎪⎪
⎨
⎪⎪⎩

1 if ẽ ij > 0
−M if ẽ ij = 0,

(3.40)

whereM > 0 is chosen large enough to superseed the contribution of the positive

electricity outputmultiplied by 1. For the vector de�ned in (3.40), any other decision

path x i ≠ x̃ i would result in a loss in the objective value, since a contribution of
1 × ẽ ij > 0 is lost (in case e ij = 0 where ẽ ij > 0) or a contribution of −M × e ij < 0 is
earned (in case e ij > 0 where ẽ ij = 0).
If negative electricity output is also allowed, we de�ne:

ṽ ij =
⎧⎪⎪
⎨
⎪⎪⎩

1 if ẽ ij > 0
−M if ẽ ij ≤ 0.

(3.41)

Again these ‘prices’ focus on determining the correct start and stop moments of

the microCHP control, which determines the correct decision path. Late and early

starts and stops again have negative contributions to the objective value, onceM is
securely chosen.

�is shows that we can control the output of the dynamic programming formu-

lation of a single microCHP completely by the price vector, in the sense that we

can derive all feasible decision paths by using arti�cial price vectors. �is idea of

controlling the output of the dynamic programming method for a single microCHP

leads to the local search heuristic of this section.

3.5.2 idea of the heuristic

�e idea of the heuristic method is the following. If we discard the cooperational

constraints in �rst instance, we can calculate the group planning by separating it

into N single house dynamic programming methods. �is separation of dimen-
sions reduces the runtime toO(N × NT 4). Now we reintroduce the cooperational
constraints as a feasibility check on the output of this calculation. �is combination

of calculating separate dynamic programs and performing a feasibility check results

in a new structure: a certain total electricity production as output and a yes/no

answer whether this production is allowed by the bounds on the combined elec-

tricity production. �e basis of the heuristic method now is to use this structure

of separately calculated dynamic programs and a feasibility check on the sum of

these individual dynamic programs, by iteratively searching on the sets of arti�cial
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vectors for each microCHP in an e�ective way until a combination of arti�cial

vectors is found, where the feasibility check leads to a positive answer. �e search

for arti�cial vectors starts from the price vector π. In this way we may expect that
the resulting solution is somehow close to the optimum.

Note that if we would have chosen to take space as our candidate for the phases

of the DP, then the separation of dimensions would have been a problem. �e task of

combining di�erent outcomes of single dynamic programs would introduce heavy

feasibility problems in time, which are harder to ignore than a possible infeasibility

in the cooperational constraints. �is gives rise to the notion of weak constraints

in the sense of the cooperational constraints; we may allow some small violations

from the desired total electricity output. In fact, one of the optimization problems

is especially aimed at minimizing the deviation from this weak constraint.

3.5.3 dynamic programming based local search method

�e idea behind the local search method presents the structure of the heuristic:

we use separate dynamic programming formulations for individual microCHPs

and simply combine the output of these dynamic programming formulations to

perform a feasibility check on the cooperational constraints. �e searching part

of the heuristic consists of the search for input vectors v i that result in solutions
‘close’ to the optimal solution of the microCHP planning problem. �erefore it is

of importance to de�ne local moves in the search method and to de�ne stopping

criteria, since we also want to limit the computational e�ort of the heuristic. We

propose the following local moves and stopping criteria.

Local moves

In Section 3.4 we proposed the dynamic programming formulation for the group

of microCHPs, where all possible combinations of production vectors in individ-

ual houses are coded by the state space. In this heuristic we need a way to search

through these possible combinations, since the dependence between di�erent house

productions is lost when calculating separate house DPs. Since we do not want to

change the state de�nition in the house DP to compensate for this loss of (coopera-

tional) information (this would lead to the original DP for the group of microCHPs

or similar state expansions), the only way of applying a search can go via the input

of the individual DPs. Since f i(v i) depends on the (arti�cial) price vector v i we
change the price vector of the house DPs in our search. Of course the value of the

objective function for the output of the group of microCHPs is still calculated with

the original price vector π.
Starting with a price vector v i = π for each house i, we iteratively adjust the

price vectors based on the result of the DPs for the individual houses using their

current price vectors. We try to remain as close as possible to the original price

vector, in the hope to stay close to the optimal value for the objective function. In

each iteration the price v ij of interval j for each microCHP i is locally adjusted if:
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• Pupperj is violated and the microCHP of house i is decided to be on in the
current solution;

• P l owerj is violated and the microCHP of house i is decided to be o� in the
current solution.

In the �rst case we want to make time interval j less attractive for production by
generator i. �is can be reached by reducing the price v ij . In the second case we
want to make time interval j more attractive for production. To achieve this we
increase the price v ij . To test this approach, we have chosen for the following simple
updating scheme:

• in the �rst case v ij is multiplied with a factor a, where 0 < a < 1;

• in the second case v ij is multiplied with a factor 2 − a.

All other prices remain unchanged.

Stop criteria

�emethod stops when a feasible solution is found or when a maximum number

of iterationsMaxIt is reached. If the maximum iteration countMaxIt is reached
and we did not �nd a feasible solution, the solution with the smallest error value

err is given as a best approximation to the �eet constraints. �is error err is the
absolute sum of the mismatch to the upper and/or lower bounds Pupperj and P l owerj :

err ∶=
NT
∑
j=1

(max(
N
∑
i=1
e ij − P

upper
j , 0) +max(P l owerj −

N
∑
i=1
e ij , 0)) .

InAlgorithm2 a summary of the algorithm is given. Note that the basic structure

of this heuristic may also be applied to other Dynamic Programming formulations

which allow a decomposition of the state, leading to a simpli�ed version, consisting

of a set of individual DPs.

3.5.4 results

Below we present the results of the local search method for both the small instances

and the medium instances. In the local search method for the small instances we

set the parameters a = 0.9 and MaxIt = 100. In the medium instances we again
chooseMaxIt = 100. As multiplication factor a we now use the values 0.9, 0.7, 0.5,
0.3 and 0.1.

Results for small instances

�e quality of the local search method is veri�ed by comparing its objective values

and computational times to the ones of the ILP approach given in Tables 3.4 and 3.5.

�e local search method is only applied to the feasible instances as found by solving
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Algorithm 2 Local search on the microCHP planning problem
Input: price vector π, lower and upper bounds P l ower and Pupper , v i ∶= π for all
houses i
repeat
solve f i(v i) for all i resulting in solution x = (x 1 , . . . , xN);

calculate total production (
N
∑
i=1
e i1 , . . . ,

N
∑
i=1
e iNT ) of solution x;

for all j do

if
N
∑
i=1
e ij > P

upper
j then

for all i with x ij = 1 do
v ij ⇐ av ij

end for
end if

if
N
∑
i=1
e ij < P l owerj then

for all i with x ij = 0 do
v ij ⇐ (2 − a)v ij

end for
end if

end for
until solution x is feasible orMaxIt is reached

the ILP. Table 3.7 gives the details of the solutions for the small instances that are

found by applying the local search method, where the objective value divided by the

number of microCHPs, the computational time, the number of iterations and the

error value are presented. As a �rst veri�cation, the local search method produces

optimal results for all instances I(k, 1) as should be the case, since independent
DPs can be used in case of no network restrictions. In 15 of the 78 instances no

feasible solution is found; the corresponding deviation from the bounds is denoted

in the table. It is noteworthy that in one case a feasible solution is found in the 100th

iteration (I(8, 7)).
When we categorize the results by the number of microCHPs and by the pro-

duction pattern variants, we obtain average results, as in Table 3.8. On the le�

hand side averages are taken over all (feasible) production pattern variants and

on the right hand side averages over all (feasible) numbers of houses. We de�ne

the quality of the objective value to be the quotient of the local search objective

value and the optimal objective value Q ∶=
zmax, l s
zmax,opt . �is quality is presented in Table

3.8, as well as the computational time and the percentage of infeasible solutions.

�e average quality Q of all instances is 0.95. No trend can be identi�ed between
the number of houses and the quality of the local search method. �e production

pattern variant has an e�ect on the quality. An explanation for this behavior is that
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instance solution instance solution

N variant
zmax
N time (s) iter err N variant

zmax
N time (s) iter err

1 1 1.147 0.015 0 0 6 10 0.942 0.141 71 0

1 2 1.092 0.015 3 0 7 1 1.156 0.015 0 0

1 10 1.092 0.016 3 0 7 2 1.137 0.016 4 0

2 1 1.236 0.015 0 0 7 3 1.137 0.016 4 0

2 2 1.208 0.015 3 0 7 4 1.079 0.016 6 0

2 3 0.937 0.078 100 200 7 5 1.068 0.031 12 0

2 4 0.937 0.078 100 400 7 6 0.904 0.078 39 0

2 5 0.937 0.078 100 600 7 7 0.893 0.219 100 900

2 6 1.016 0.016 10 0 7 8 1.093 0.266 53 0

2 10 1.016 0.016 10 0 7 10 0.839 0.203 100 150

3 1 1.197 0.015 0 0 8 1 1.156 0.016 0 0

3 2 1.197 0.015 0 0 8 2 1.138 0.016 4 0

3 3 1.097 0.016 12 0 8 3 1.087 0.016 6 0

3 4 1.097 0.016 12 0 8 4 1.087 0.016 6 0

3 5 0.863 0.031 22 0 8 5 1.073 0.031 12 0

3 10 0.863 0.031 22 0 8 6 0.875 0.063 29 0

4 1 1.183 0.015 0 0 8 7 0.838 0.218 100 0

4 2 1.068 0.015 12 0 8 8 1.151 0.016 4 0

4 3 1.050 0.016 12 0 8 9 0.986 0.266 100 1050

4 4 1.103 0.015 13 0 8 10 0.881 0.219 100 7600

4 5 0.939 0.078 31 0 9 1 1.153 0.016 0 0

4 6 0.794 0.047 32 0 9 2 1.137 0.031 4 0

4 8 0.931 0.125 100 1250 9 3 1.092 0.016 6 0

4 9 0.931 0.141 100 2850 9 4 1.092 0.031 6 0

4 10 0.822 0.141 100 1500 9 5 1.057 0.031 11 0

5 1 1.164 0.015 0 0 9 6 0.842 0.078 25 0

5 2 1.083 0.016 6 0 9 8 1.148 0.015 4 0

5 3 1.063 0.016 6 0 9 9 0.960 0.250 100 650

5 4 1.054 0.047 22 0 9 10 0.843 0.188 70 0

5 5 1.054 0.031 22 0 10 1 1.176 0.016 0 0

5 8 0.978 0.172 100 400 10 2 1.161 0.016 4 0

5 10 0.856 0.062 44 0 10 3 1.098 0.016 6 0

6 1 1.163 0.015 0 0 10 4 1.098 0.015 6 0

6 2 1.096 0.015 6 0 10 5 1.094 0.031 6 0

6 3 1.096 0.016 6 0 10 6 0.963 0.109 33 0

6 4 1.092 0.031 9 0 10 7 0.871 0.109 37 0

6 5 0.967 0.047 20 0 10 8 1.170 0.031 7 0

6 6 0.940 0.063 23 0 10 9 0.968 0.297 100 2100

6 8 0.925 0.203 100 500 10 10 0.849 0.297 100 6850

Table 3.7: Results for the dynamic programming based local search method
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µ σ µ(ILP) µ(l s) % µ σ µ(ILP) µ(l s) %

1 1.000 0.000 0.07 0.015 0.00 1 1.000 0.000 64.14 0.015 0.00

2 0.967 0.038 0.60 0.042 42.86 2 0.979 0.028 145.04 0.017 0.00

3 0.951 0.063 1.56 0.021 0.00 3 0.962 0.024 147.31 0.023 11.11

4 0.916 0.062 4.66 0.066 33.33 4 0.980 0.022 1056.41 0.029 11.11

5 0.942 0.059 88.37 0.051 14.29 5 0.955 0.047 2407.59 0.043 11.11

6 0.937 0.057 362.25 0.066 12.50 6 0.891 0.068 3398.09 0.065 0.00

7 0.969 0.032 1346.44 0.096 22.22 7 0.929 0.025 7206.77 0.182 33.33

8 0.958 0.047 3199.52 0.088 20.00 8 0.936 0.067 45.55 0.118 42.86

9 0.946 0.064 3412.56 0.073 11.11 9 0.912 0.030 784.09 0.239 100.00

10 0.961 0.038 4963.09 0.094 20.00 10 0.913 0.057 4457.36 0.131 40.00

Table 3.8: Average results for small instances
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houses z l s/N time (s) i terat ions error in f eas . (%)
25 1.007 1048 80.3 20588 75.0

50 1.026 1982 79.1 36063 75.0

75 1.040 2869 78.7 59734 75.0

100 1.031 3831 78.8 71050 75.0

produc t ion
pattern z l s/N time (s) i terat ions error in f eas . (%)
11 1.165 859 16.8 0 0.0

12 0.971 2951 100.0 9340 100.0

13 0.984 2962 100.0 65654 100.0

14 0.984 2958 100.0 112440 100.0

interval s z l s/N time (s) i terat ions error in f eas . (%)
24 0.953 1 75.3 27163 75.0

48 1.023 243 80.5 39252 75.0

96 1.103 7053 81.9 74162 75.0

Table 3.9: Results for medium instances with a = 0.9

the local search method has more di�culty in �nding a feasible solution under

tighter network constraints, resulting in larger deviations from the original price

vector. �is original vector is used in the objective value, which results in worse

results. �is is also shown in the percentages of infeasible solutions (violating the

electricity constraints) that are found by the local search method. �e network

variant has more in�uence on this percentage than the number of houses. If we look

at the deviation from the electricity bounds (given by the error err), the solutions
are relatively close to these bounds. �erefore we included these infeasible solutions

in all calculations and comparisons.

Results for medium instances

For the medium instances, we are interested in the behavior of the local search

method dependent on the following three instance parameters: the size of the group

of houses, the production pattern variant, and the number of intervals in a planning

for 24 hours. �e criteria we use to evaluate the behavior are the objective value,

the computational time, the number of iterations the local search method needs,

the error and the percentage of infeasible solutions. �e results in Table 3.9 and 3.10

are, for a given value of one of the parameters, the averages over all combinations

which are derived from the two other parameters.

�e results achieved with the value a = 0.9 (as applied to the small instances)
are given in Table 3.9. �e computational time per house and the error per house

decrease slightly when the number of houses increases. For 100 houses the error

corresponds to 0.7 kWh over/underproduction per house. For production pattern

variant 11 the method always �nds a feasible solution (in a few iterations), while for

the variants 12, 13 and 14 no feasible solution is found (and the method stops a�er

100 iterations). However, note that these production constraints are more tight than

in the small instances and, thus, there is quite a chance that no feasible solution may

exist. Regarding the number of intervals the computational times grow fast. �e
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houses z l s/N time (s)
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

25 1.007 0.994 0.996 0.977 0.979 1048 1007 1011 997 1012

50 1.026 0.981 0.984 0.976 0.949 1982 1915 1912 1898 1925

75 1.040 1.001 0.975 0.966 0.970 2869 2719 2741 2746 2737

100 1.031 0.981 0.962 0.976 1.026 3831 3628 3569 3686 3647

i terat ions error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

25 80.3 76.9 76.0 70.4 71.2 20588 21498 16103 17807 16377

50 79.1 77.0 72.8 71.8 72.3 36063 41865 33840 33758 28492

75 78.7 76.6 71.4 72.3 69.8 59734 60839 44525 47031 41800

100 78.8 76.6 72.1 72.4 70.8 71050 78146 68117 63392 56813

produc t ion z l s/N time (s)
pattern 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

11 1.165 1.090 1.033 1.005 1.005 859 405 417 519 535

12 0.971 0.964 0.966 0.964 0.971 2951 2949 2900 2886 2867

13 0.984 0.942 0.951 0.966 0.961 2962 2956 2957 2958 2956

14 0.984 0.961 0.967 0.959 0.987 2958 2959 2957 2963 2963

i terat ions error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

11 16.8 7.1 8.7 9.9 9.6 0 0 0 0 0

12 100.0 100.0 83.7 77.0 74.6 9340 13148 12204 13381 10079

13 100.0 100.0 100.0 100.0 100.0 65654 69146 58121 48221 38450

14 100.0 100.0 100.0 100.0 100.0 112440 120054 92259 100386 94951

interval s z l s/N time (s)
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

24 0.953 0.955 0.947 0.952 0.946 1 1 1 1 1

48 1.023 0.953 0.939 0.926 0.939 243 235 197 191 180

96 1.103 1.060 1.052 1.043 1.058 7053 6716 6726 6803 6810

i terat ions error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

24 75.3 75.1 75.1 75.2 75.2 27163 16775 16588 17969 17041

48 80.5 77.0 65.8 61.3 58.8 39252 44048 26431 23150 25548

96 81.9 78.2 78.4 78.8 79.2 74162 90937 78919 80372 65021

Table 3.10: Results for medium instances and varying a

objective value increases as the number of intervals increases; however, the error

increases accordingly, so the convergence is slower for a larger number of intervals.

Next, since optimal objective values are unknown for these instances, the solu-

tions of di�erent updating schemes of the price vector are compared to each other.

In this comparison, the focus is in �rst instance on the ability to �nd a feasible

solution and the objective value is only of secondary interest. �e results for using

the values 0.9, 0.7, 0.5, 0.3 and 0.1 for the parameter a are given in Table 3.10. �e
di�erent updating schemes perform similar. If the focus is more on minimizing the

error, the values 0.5, 0.3 and 0.1 are advantageous. For these values of a for some
instances with production pattern variant 12 the local search method could �nd

feasible solutions. If the focus is on the objective value, a = 0.9 gives better results
against a slightly higher number of iterations and computational time.

Figure 3.16 shows a comparison of the detailed planning of a �eet of 25 houses

and production pattern variant 12. A planning based on half an hour intervals

is compared to a planning based on intervals of a quarter of an hour. 202.5 run

hours are planned for the half an hour based planning and 210.75 run hours for the

quarter of an hour planning. Figure 3.16a shows that only 74.5 of these run hours of
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(a) Two planning results using a = 0.9 for production pattern 12 and 25 houses
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(b) Fleet behaviour

Figure 3.16: �e detailed planning of a case with a di�erent number of intervals

the two plannings do overlap. In Figure 3.16b the total generation is plotted against

the background of the original price vector. �is example emphasizes that making

a planning for 15 minutes intervals clearly leads to di�erent results compared to a

planning for 30 minutes intervals (both in total as for individual houses), although

the minimum runtime and o ime stay �xed on 30 minutes.

In general we can state that an increase in the number of houses leads to a

better �t for the �eet to the given production bounds (i.e. the amount of electricity

per house outside the bounds decreases). Concerning the amount of iterations,
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the largest improvement in objective value is reached within the �rst 25 iterations.

Remaining iterations only lead to slightly better objective values. As a general

comment, it is hard to �atten the total output pro�le over the whole day, when the

aggregated heat demand pro�le deviates too much from the desired production

bounds for a too long period.

3.5.5 conclusion

In this section a local search method is developed to solve the microCHP planning

problem. Small instances are tested to verify the quality of this heuristic method in

comparison to the (optimal) solutions by solving the ILP or basic DP formulation;

the local search method results in a 5% loss in objective value and a 99.0% gain

in computation time compared to the ILP formulation and a 99.9999% gain in

computation time compared to the basic DP formulation. Furthermore, the local

search method is tested for the medium instances, to see whether it is applicable in

practice. Considering the fact that, in practice, we can unfold one calculating entity

per house, a planning for 100 houses, 96 intervals and using 100 iterations can be

made within 2.3 minutes. In our experience we �nd that the maximum number of

iterationsMaxIt can easily be reduced with a factor 4, since most best solutions are
found within the �rst 25 iterations. Using this reduction a planning can be made in

about half a minute. Regarding feasibility, a feasible solution for the small instances

is not found in 19% of the cases, where the ILP formulation did �nd a solution.

Depending on the value of a, for 67% to 75% of the medium instances no feasible
solution is found (note that the production bounds for the medium instances are

more tight). However, it may be that for a larger percentage of these instances even

no feasible solution may exist at all.

3.6 Approximate Dynamic Programming

In the local search method of Section 3.5 and the column generation-like technique

that is proposed in Section 3.7 we use a separation of the two dimensions in the

microCHP planning problem. �e reason for this separation is that the size of

the basic dynamic programming formulation is too large for practical instances to

be solved to optimality in reasonable time. Approximate Dynamic Programming

(ADP) o�ers another approach to treat this di�culty caused by the size of the DP.

�e idea of this heuristic is explained in Section 3.6.1. Section 3.6.2 shows an initial

attempt to apply ADP to solve the microCHP planning problem, see also [127].

3.6.1 general idea

In general, a dynamic programming formulationmodels a process for which several

decisions have to be made. A state represents a possible outcome a�er a choice for

(a part of) the decision variables. In the way we apply DPs to the planning problems

in this thesis, states are grouped in so-called phases, where a phase represents the

progress of the determination of all decision variables, measured by the amount of
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decision variables that are �xed by the corresponding states. State transitions only

occur between states of subsequent phases; so, a state transition models the choice

for a speci�c decision (in the microCHP planning problem this decision consists of

the on/o� decisions for all N microCHPs in a speci�c time interval). For each state
σϕ in phase ϕ the value V(σϕ) gives (for a maximization problem) the maximum
objective value that can be reached in the remaining phases by making a decision

for each of the remaining ‘open’ decision variables, assuming that one starts in

the situation described by the state σϕ . �is value is calculated using a backwards
updating structure, in which the value of each state in phase ϕ is determined from
the values V(σ ′ϕ+1) for the states in phase ϕ + 1 and the costs that are associated
with the state transitions from the state σϕ in phase ϕ to the states in phase ϕ + 1,
where infeasible state transitions are penalized with a cost of −∞. �e value of

V(σ1) gives the optimal value for the considered problem, assuming that σ1 is the
initial state at the beginning of the planning process, and the decisions that result

in this value can be found by backtracking the corresponding state transitions that

result in this value. �is sequence of decisions is also called the optimal decision

path. For solving a problem to optimality by a DP, all state transitions need to be

considered.

Although considerable e�ort is put into reducing the number of states in each

phase by cleverly setting up the de�nition of a state (as we have seen in the Held-

Karp algorithm and in the development of a DP formulation for the microCHP

planning problem), the size of a DP may still be too large.

Approximate Dynamic Programming [107, 108] may be a helpful tool to solve

such large DPs. It approximates the value of states by evaluating only a small

part of the DP transition graph instead of accurately calculating the correct value

by evaluating the complete DP transition graph. To reach a satisfying result, an

ADP method needs to focus on two important aspects. An ADP method wants

to search only a small, but relevant, part of the state space and it wants to have an

e�ective way of using information that results from this search into determining an

approximation of the value function for the states in the di�erent phases.

First, the ADP method uses sample paths. A sample path is a chosen sequence

of decisions, as depicted in Figure 3.17. �is sample path is used in the process

of updating the approximation of the value function V . Iteratively sample paths
are created until the approximation of the value function is such, that a sample

path is found that is close to the optimal decision path. Of course we want to have

sample paths that are helpful in this updating process, i.e. we want to have sample

paths that are close to the optimal decision path. Since this optimal decision path is

unknown, the task of creating sample paths needs a good mixture of intensi�cation

and diversi�cation. Intensi�cation concentrates on using an approximation of the

value function to create sample paths, in which sample paths are either completely

determined by this approximation of the value function or chosen with a certain

probability that is based on this approximation of the value function. Diversi�cation

is used to escape from staying in a local area in the state space, by determining

completely arbitrary sample paths. Note that the creation of a sample path should be

given by a very simple heuristic; we want to avoid using computationally intensive
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(a) Dynamic programming structure

a

b
c

(b) Sample path in a dynamic programming

structure

Figure 3.17: A (partial) transition graph of a DP formulation and a sample path

through this structure

approximated value functions for all possible state transitions, which would resem-

ble to solving the original DP, which we want to avoid. �erefore we stress that a

good implementation of ADP uses relatively few iterations, thereby analyzing only

a fraction of all possible sample paths, where these sample paths are representative

for the wide range of options that a decision maker has.

�e second important aspect of an ADP method is the approximation of the

value function. �is value function has in�uence in determining the desire to

choose a certain state in the creation process of new sample paths. States with a

large estimated value are more likely to be visited in subsequent sample paths than

states with a smaller estimated value. �is approximation needs to extract relevant

information from the sample paths to update the estimated value of the desire to

be in a certain state for all phases of the DP transition graph. �is information

is not only based on the state transition between subsequent states, but may also

depend on the approximated values of states in successive phases and the result of

the sample path in these phases.

�e general idea of ADP is illustrated by an example. Although this example

stems from a complete di�erent research topic, it treats sample paths in a natural

way and uses these sample paths to update value function approximations.

Example: analyzing the transformation of leukemic stem cells by gene overexpression
[7]

Leukemia is caused and maintained by the presence of leukemic stem cells, which

behave di�erently from the normal hematopoietic stem cells. Leukemic stem cells
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are formed out of normal hematopoietic stem cells by a multistep transformation

process, in which various mutations occur. �ese cells consist of hundreds or

thousands of di�erent gene subtypes, that have several di�erent activities for each

cell. Activities are e.g. di�erentiation, proliferation and cell death. Leukemic stem

cells di�er from normal cells in their activity. To be able to treat these cells we might

be interested to unravel the di�erent activities between leukemic stem cells and

normal hematopoietic stem cells: which gene expression (which denotes the role of

the gene in determining activities) results in activities that make a cell a leukemic

cell?

By overexpressing (giving a genemore importance in determining cell activities)

genes g ∈ G = {1, . . . , ∣G∣} one can stress the role of the corresponding genes and,
thus, try to create a leukemic cell. Let the overexpression of a gene be represented by

eg . �e ‘resemblance’ function r(eg) gives the extent to which the overexpression
of this gene makes the cell resemble a leukemic stem cell. Suppose that there is a

maximum total amount E which can be used to overexpress the set of genes G:

∑
g∈G
eg ≤ E . (3.42)

In practice at most four di�erent genes are overexpressed in a single test. �e

objective of our DP may then be to overexpress genes in such a way, that the

resemblance ∑
g∈G
r(eg) is maximized, while the total overexpression is smaller than

or equal to E.
A dynamic programming formulation of this problem can be given by using

the di�erent genes as phases and using the di�erent possibilities for overexpression

for each gene as state transitions between two consecutive phases. A state s f in
phase f is de�ned as the amount of overexpression Es f which still can be used in
the following phases (Es f ≤ E) - it is not necessary to know how the other amount
is used in the �rst phases. �e costs that are associated with state transitions are the

resemblance values r(e f ) for state transitions from s f−1 = Es f−1 to s f = Es f between
phase f − 1 and phase f (where e f = Es f−1 − Es f ), for Es f ≥ 0; otherwise the cost is
−∞. �e value V(s f ) of a state s f maximizes the remaining resemblance of genes
f , . . . , ∣G∣; in a recursive way V(s1) can be calculated, which gives the optimum
solution of overexpressed genes.

�e ADP approach of solving this problem concentrates on sample paths and

an approximation of the value of states. A sample path is simply de�ned as a vector

of overexpression for all genes, which has an accompanying resemblance value.

Based on this resemblance value for a speci�c gene expression r(eg) and the total
resemblance of the remaining genes g + 1, . . . , ∣G∣, it can be veri�ed whether it is
worth to increase or decrease the overexpression of gene g and, thus, whether it is
increasingly/decreasinglyworth to visit the corresponding state; i.e. the contribution

of the corresponding state transition to the objective value can be compared to the

contribution of the remaining decisions in the sample path, leading to a value that is

above or below the average contribution. In this way a value function approximation

can be updated and the creation of gene expression sample paths can be steered
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towards a certain direction that increases the total resemblance to a leukemic stem

cell.

3.6.2 approximate dynamic programming based heuristic to solve the

microchp planning problem

In the microCHP planning problem we have NT + 1 phases, which are related to
time intervals, andO( j3) states in phase j ∈ {1, . . . ,NT + 1}. A state σ j describes
the taken decisions for all N houses up to the interval j: it is a vector of length
N of state tuples for individual houses. Translated to sample paths, a single edge
(state transition) (σ j , σ j+1) in the DP transition graph consists of a decision for all
N microCHPs in time interval j. Between successive phases there are 2N possible
state transitions for each state in the considered time interval. �e value function

D j(σ j) gives the maximal cooperational pro�t that can be achieved in the intervals
j, . . . ,NT if, at the begin of interval j, the state is given by σ j .

�e creation of sample paths

A decision in creating a sample path consists of a combination of binary choices for

N microCHPs. Since there are 2N possible choices we want to reduce the amount of
options that we consider in creating a sample path. In a �rst implementation [127] we

only consider an ordered set of microCHPs. �is order is based on the necessity to

have the corresponding microCHP running: the earlier it has to produce, the higher

in the order. For this ordered set we allow the following type of state transitions:

given an integer k, choose the �rst k microCHPs to be running and the remaining
microCHPs to be o�. �is limits the state transitions to N + 1 choices per phase. In

a forward calculation we choose the state transition that leads to the state with the

largest approximated value function. �e value V(σ j) ∶= D j(σ j) is approximated
by the function Ṽ(σ j).

Value function approximation

Value function approximation is an iterative process using iterations t in which the
approximated value function Ṽt(σ j) is updated, based on the previous value and
information that is extracted from a sample path. New information can be taken

into account in di�erent ways. In our implementation, the extent to which new

information in�uences the value function approximation is determined by a factor

α: the value function approximation Ṽt(σ j) in iteration t is updated as follows:

Ṽt(σ j) ∶= (1 − α)Ṽt−1(σ j) + αv(ω), (3.43)

where v(ω) is a value which is somehow extracted from the sample path ω. A
possible choice for this function is given below.

�e approximation of the value function in a certain state and phase has to keep

in mind that the value represents the maximum cooperational pro�t that can be
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achieved in the remaining intervals. �erefore we base our function (v(ω)) on the

following properties:

• the electricity pro�t that can be made by applying a certain state transition,

• an estimation of the pro�t that can be made in the remaining time intervals

(including an approximation of the total remaining production capacity),

• the approximation of the value function of states in the subsequent phase,

• penalty costs for the validation of heat constraints, operational and coopera-

tional violations.

�e �rst three properties concentrate on taking the best possible state transition

given that we are in a certain state. �e fourth property focuses on the desire of being

in a certain state. Altogether these properties aim to increase the approximated

value of a certain state, if this state and a corresponding state transition do not

violate any constraint of the microCHP planning problem and have a relatively high

contribution to the objective value. For a detailed description of the heuristic we

refer to [127].

Results

Table 3.11 shows preliminary results of the Approximate Dynamic Programming

based heuristic applied to the small instances. �e table shows that for 91% of the

small instances feasible solutions are found. �is is an improvement when compared

to the dynamic programming based local searchmethod. Note that for the presented

results, for each instance the factor α is chosen such that the resulting objective
value is optimized and the deviation from the production bounds is minimized.

�e computational times that are presented, consist of the time that it takes to solve

the instance using the found factor α, whereby the process of �nding this value of
α is not taken into account.

�e results for the medium instances are summarized in Table 3.12. Compared

to the results for the dynamic programming based local search method, we see

that for an increasing number of instances a feasible solution is found, thereby

decreasing the average deviation from the production bounds. If we di�erentiate

the error to the production pattern variant, we see a trend of increasing errors when

the production bounds get more tight. Regarding the results, di�erentiated to the

number of time intervals, we see that all instances with intervals of half an hour

have a feasible solution. However, when the interval length changes to 15 minutes,

the results show large deviations and a large percentage of infeasible solutions. �is

is unsatisfactory, since we want at least to get close to the results for the instances

with half an hourly time intervals.

3.6.3 conclusion

In this sectionwe have sketched away to applyApproximateDynamic Programming

to the microCHP planning problem. It proposes a method that uses the original
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instance solution instance solution

N variant
zmax
N time (s) err N variant

zmax
N time (s) err

1 1 1.126 0.343 0 6 10 1.004 2.041 0

1 2 1.071 0.345 0 7 1 1.132 3.074 0

1 10 1.071 0.345 0 7 2 1.132 2.872 0

2 1 1.225 0.683 0 7 3 1.132 2.762 0

2 2 1.197 0.620 0 7 4 1.101 3.033 0

2 3 0.996 0.681 0 7 5 1.059 2.775 0

2 4 0.996 0.637 0 7 6 0.948 2.240 0

2 5 0.996 0.672 0 7 7 0.914 2.582 0

2 6 0.993 0.622 0 7 8 1.131 3.099 0

2 10 0.993 0.622 0 7 10 0.891 3.108 0

3 1 1.189 0.978 0 8 1 1.134 3.700 0

3 2 1.189 0.960 0 8 2 1.134 3.838 0

3 3 1.102 0.957 0 8 3 1.109 3.800 0

3 4 1.102 0.947 0 8 4 1.082 3.963 0

3 5 0.905 0.970 0 8 5 1.070 3.713 0

3 10 0.905 0.970 0 8 6 1.024 3.713 0

4 1 1.173 1.383 0 8 7 0.887 3.536 0

4 2 1.096 1.124 0 8 8 1.132 3.561 0

4 3 1.072 1.122 0 8 9 1.078 3.804 1500

4 4 1.107 1.356 0 8 10 0.894 3.835 1500

4 5 0.985 1.350 0 9 1 1.133 4.427 0

4 6 0.985 1.350 0 9 2 1.133 4.449 0

4 8 1.042 1.397 700 9 3 1.111 4.522 0

4 9 1.042 1.402 1500 9 4 1.088 4.666 0

4 10 0.971 1.460 750 9 5 1.062 4.452 0

5 1 1.159 1.902 0 9 6 0.974 4.670 0

5 2 1.119 1.881 0 9 8 1.130 4.671 0

5 3 1.114 1.854 0 9 9 1.109 4.602 1550

5 4 1.052 1.746 0 9 10 0.948 4.698 0

5 5 1.052 1.854 0 10 1 1.150 5.529 0

5 8 1.117 1.892 0 10 2 1.150 5.606 0

5 10 1.004 1.864 0 10 3 1.129 5.060 0

6 1 1.159 1.945 0 10 4 1.108 5.412 0

6 2 1.126 2.053 0 10 5 1.090 5.384 0

6 3 1.126 2.031 0 10 6 1.024 5.047 0

6 4 1.080 2.047 0 10 7 0.940 4.937 0

6 5 1.006 2.061 0 10 8 1.151 5.189 0

6 6 1.005 2.043 0 10 9 0.979 5.088 3750

6 8 1.138 2.044 0 10 10 0.927 5.816 0

Table 3.11: Results for the small instances for the Approximate Dynamic Program-

ming method

structure of the basic Dynamic Programming formulation to perform a heuristic on.

�is heuristic uses sample paths, which are �xed decision plans for all microCHPs,

and extracts information from the objective values that belong to these sample

paths to approximate the real value of the optimal solution.

3.7 Column generation

�e heuristics that are developed in the previous sections treat the twodimensional

aspect of themicroCHPplanning problem simultaneously, by concentrating on both

feasibility (satisfying cooperational constraints) and pro�t maximization. Since this

treatment shows increasing di�culties in the context of feasibility for the medium

instances (e.g. an increasing error for an increasing number of intervals in the local



92

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

houses z l s/N time (s) error in f eas . (%)
25 1.019 22.3 2342 41.7

50 1.024 68.7 4042 41.7

75 1.026 137.6 13281 41.7

100 1.026 242.2 15175 50.0

produc t ion
pattern z l s/N time (s) error in f eas . (%)
11 1.191 121.8 0 0.0

12 1.063 117.4 1796 41.7

13 0.951 116.5 6742 66.7

14 0.891 115.1 26302 66.7

interval s z l s/N time (s) error in f eas . (%)
24 1.002 34.9 10353 75.0

48 1.052 83.1 0 0.0

96 1.018 235.0 15777 56.3

Table 3.12: Results for the medium instances for the Approximate Dynamic Pro-

gramming method

search method), we shi� our focus towards feasibility. �e heuristic that we propose

in this section is based on the framework of column generation [58]. �e main

advantage of column generation in general is that it o�ers a technique that can be

separated into tractable parts. It aims at reducing the state space of the problem in

a natural way, which can be best explained by an example.

Example: minimizing waste in a glass company [12]

Suppose we have a glass company that manufactures di�erent types of windows

w ∈W = {1, . . . ,NW} that di�er in length and height. �is company has several

production lines that produce standardized glass plates, from which the di�erent

types of windows are to be cut. Each window type has a certain customer demand

dw , that needs to be ful�lled. Given this demand, the glass company wants to
minimize the number of used glass plates that have to be produced (and thus to

minimize the glass loss/waste), such that all demand can be cut from these plates.

To solve this problemwe can de�ne a cutting pattern p ∈ P to represent a speci�c
way to cut a glass plate. Such a pattern p consists of nonnegative integer numbers
of windows for all types (p = (s1,p , . . . , sNW ,p)), such that these windows can be cut
from the glass plate. For each cutting pattern we have to choose a nonnegative value

xp , which speci�es how many glass plates are produced using this cutting pattern.
�e constraints for the variables xp are:

∑
p∈P
sw ,pxp ≥ dw ∀w ∈W (3.44)

xp ∈ N ∀p ∈ P. (3.45)

Of course, the total number of used glass plates has to be minimized:

min∑
p∈P
xp . (3.46)
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�e optimization problem is then given by (3.46), (3.44) and (3.45).

�e number of possible cutting patterns increases signi�cantly when the number

of di�erent window types increases, which could result in increasing computational

times to solve practical problem instances. To overcome this, the column generation

technique aims at using only a limited set of cutting patterns Pl im ⊂ P, instead of
the complete large set of feasible cutting patterns P, and increasing this set Pl im by
adding patterns that could improve the current solution. �e optimization problem

that uses such a limited set of patterns has the following form:

min ∑
p∈Pl im

xp

∑
p∈Pl im

sw ,pxp ≥ dw ∀w ∈W (3.47)

xp ∈ N ∀p ∈ Pl im .

In a solution to the optimization problem, the constraints (3.44) bound the

minimum number of necessary plates. When we increase the right hand side of

(3.44) by one, for some constraints the objective value increases by a certain amount.

�is amount is called the shadow price λw of this constraint. �e value λw results
from the LP-relaxation of (3.47). New cutting patterns are now created by looking

for the combination of window types yw that �t in a glass plate and maximize their
combined weighed in�uence:

max ∑
w∈W

λw yw

s.t.yw ∈ N ∀w ∈W (3.48)

(y1 , . . . , yNW ) ∈ P.

If∑w∈W λw yw > 1 a cutting pattern pnew = (s1,pnew , . . . , sNW ,pnew ) = (y1 , . . . , yNW )
can be added to the set Pl im , that could improve the current solution of the limited
optimization problem (3.47). As long as we �nd new cutting patterns that improve

the current solution, we can continue solving the main problem (3.47) and sub

problem (3.48) iteratively.

3.7.1 general idea

�e column generation technique divides a problem into two problems: a main

problem that selects patterns from pattern sets for each microCHP to obtain a

certain objective, and a sub problem that generates new patterns for di�erent mi-

croCHPs that are attractive for the main problem in the sense that they o�er some

value to the current pattern sets.

�e microCHP planning problem o�ers a natural framework to apply column

generation. As we have shown in previous sections, the separation of dimensions

is a crucial step in the search for a heuristic that attains good results in practice.

Recall that the dependencies in time are represented by hard constraints and the

dependencies in space by weak constraints. �erefore we consider a pattern to be a
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sequence in time of electricity generation that corresponds to a feasible sequence

of binary on/o� decisions for a microCHP. In addition to that, it is a promising

approach to consider a pattern in this way in the context of scalability requirements.

Namely, since the time horizon is �xed for each pattern, they can be easily combined

into patterns at a higher hierarchical level. �is structure is discussed in more detail

in Chapter 6.

�e main disadvantage of the heuristics that are presented in the previous

sections, is that they combine the search for a solution that maximizes the pro�t

of the group of microCHPs with the search for a solution that minimizes the

deviation from the weak cooperational constraints. �e column generation method

gives a more direct way of focusing on either one of these con�icting optimization

objectives. Especially, we use the column generation technique to concentrate on

minimizing the deviation from the weak cooperational bounds, since this problem

has not been solved that good as we aim at.

�e basic idea for the column generation approach is depicted in Figure 3.18.

Figure 3.18a shows four pattern sets S i for microCHP i = 1, . . . , 4, which each
consist of six patterns. For each of these sets S i one pattern is selected and the
combined electricity generation is plotted in the middle of the �gure. It shows some

deviation from the cooperational bound set by P = Pupper = P l ower = 2. Based on
this deviation, new patterns are generated for each set as can be seen in Figure 3.18b.

Figure 3.18c shows that with these extended pattern sets a solution is found such

that the cooperational bound P can always be followed.

3.7.2 problem formulation

�e problem of minimizing the deviation from the cooperational bounds (desired

production pattern) is given by:

zmin = min
NT
∑
j=1

(sl j + ex j), (3.49)

and by the constraints (3.15)-(3.30) and (3.33)-(3.36). Constraints (3.15)-(3.30) derive

feasible generation patterns for individual microCHPs and constraints (3.33)-(3.36)

represent the desired production bounds.

When we transform this ILP formulation into ILP formulations that can be

used by the column generation approach, we need to introduce the notion of

patterns, which are currently not included in the ILP formulation. Next we show

the main problem of the column generation approach, followed by the sub problem

of generating new patterns. Finally we give an overview of the complete algorithm.

Patterns

�e indicator set of patterns P = {1, . . . ,NP} represents all possible production
patterns in a horizon of 24 hours of the type of microCHP that is considered,

regardless of heat demand requirements or total desired electricity production, but
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S1 S2

S3 S4

0
2
4P

(a) Pattern sets for four microCHPs and the selection of patterns to minimize the

deviation from P

S1 S2

S3 S4

0
2
4P

(b) �e extension of the pattern sets by �nding new promising patterns

S1 S2

S3 S4

0
2
4P

(c) Extended pattern sets for fourmicroCHPs and the selection of patterns tominimize

the deviation from P

Figure 3.18: �e idea of the column generation technique applied to the microCHP

planning problem
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including appliance restrictions. For each pattern p ∈ P a corresponding electricity
generation vector pep = (pep ,1 , . . . , pep ,NT ) can be deduced. Note that the set of
patterns can be extremely large.

Since each microCHP has to respect individual requirements (due to local heat

demand and heat bu�er requirements), the feasibility of patternsmay di�er between

microCHPs: if a pattern respects the constraints (3.15)-(3.30) for one microCHP, it

does not necessarily respect the constraints of another microCHP/house. �erefore,

we cannot use a single pattern set from which one pattern has to be chosen for each

microCHP, but we need to de�ne pattern sets for each individual microCHP. �is

set of feasible patterns for microCHP i is denoted by Fi ⊂ P which takes the local
constraints into account of the building where microCHP i is installed.

Main problem

First we construct an ILP formulation, which includes the notion of patterns such

that a formulation that is equivalent to the original ILP given by (3.49), (3.15)-(3.30)

and (3.33)-(3.36) is derived. �en we subtly adapt this formulation into one that

acts as the main problem in our column generation heuristic.

In general, the o�ered bounds on the market (i.e. the desired production pat-

tern of the total �eet of microCHPs) are represented by upper and lower bound

vectors Pupper = (Pupper1 , . . . , PupperNT ) and P l ower = (P l ower1 , . . . , P l owerNT ). A produc-

tion pro�le for a microCHP is de�ned as a vector pep = (pep ,1 , . . . , pep ,NT ). �e
problem is to pick exactly one pattern p for each microCHP, such that the sum of
all production patterns falls between the lower and upper bound of the desired

production pattern in all time intervals. For this selection decision, we introduce a

binary decision variable y i ,p indicating whether production pro�le pep is chosen
for generator i (in this case y i ,p = 1) or not (y i ,p = 0). Of course we may only select
locally feasible patterns (from the sets Fi). �is results in the following Integer
Linear Program (ILP) formulation:

min

NT
∑
j=1

(sl j + ex j) (3.50)

N
∑
i=1
∑
p∈Fi
pep , j y i ,p + sl j ≥ P l owerj ∀ j ∈ J (3.51)

N
∑
i=1
∑
p∈Fi
pep , j y i ,p − ex j ≤ Pupperj ∀ j ∈ J (3.52)

∑
p∈Fi
y i ,p = 1 ∀i ∈ I (3.53)

sl j , ex j ≥ 0 ∀ j ∈ J (3.54)

y i ,p ∈ {0, 1}. (3.55)

In Equations (3.51) and (3.52) slack and excess variables sl j and ex j are introduced
to calculate the deviation from the desired (and prede�ned) production pattern



97

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

(Pupper , P l ower). �e sum of slack and excess variables is minimized in Equation
(3.50). Finally, Equation (3.53) requires that exactly one pattern is chosen for each

generator.

A feasible planning is achieved when the sum of slack and excess variables

equals 0. If no feasible planning can be found, the objective value is a measure of

the deviation from the desired production pattern.

�e problem formulated by equations (3.50)-(3.55) takes into account only

locally feasible production patterns from the sets Fi . �ese sets, however, are still
very large and it is not an option to generate these sets explicitly. For this reason a

column generation technique is developed.

�e column generation technique starts with a relatively small set of feasible

patterns S i ⊂ Fi for each microCHP i. By looking at only a small set of patterns
the above ILP problem can be solved relatively fast. However, this comes with a

possible loss of patterns that are needed for a high quality solution. �e groupmight

perform better, when some speci�c feasible production patterns from Fi would be
in the feasible pattern sets S i of the individual microCHPs. Unfortunately, we do
not know on beforehand which patterns are in the �nal solution. �erefore it is the

idea of the column generation technique to improve the current solution step by

step, by searching for the patterns which hopefully improve the current solution by

a high value, and by adding these patterns to the (small) feasible pattern set S i of
the corresponding microCHP. We have chosen to expand the pattern set S i by at
most one pattern per iteration as the heuristic evolves.

�e column generation technique uses a main problem and sub problems (as

indicated in Algorithm 3). �e main problem is similar to equations (3.50)-(3.55),

with the only di�erence that the set Fi is replaced by S i :

min

NT
∑
j=1

(sl j + ex j) (3.56)

N
∑
i=1
∑
p∈S i
pep , j y i ,p + sl j ≥ P l owerj ∀ j ∈ J (3.57)

N
∑
i=1
∑
p∈S i
pep , j y i ,p − ex j ≤ Pupperj ∀ j ∈ J (3.58)

∑
p∈S i
y i ,p = 1 ∀i ∈ I (3.59)

sl j , ex j ≥ 0 ∀ j ∈ J (3.60)

y i ,p ∈ {0, 1}. (3.61)

Sub problem

�e second phase of the column generation technique consists of creating new

patterns that can be added to the current pattern sets S i for each microCHP in the
main problem. �ese new patterns should contribute to the existing sets in the

sense that they should give possibilities to decrease the objective value in the �rst
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phase (i.e. the sum of slack and excess). A new pattern peg is only added 1) if it is a
locally feasible pattern (g ∈ Fi) and 2) if it may improve the existing solution. We
follow the intuition of the column generation approach to use shadow prices that

result from the LP-relaxation of the main problem to determine candidate patterns.

Let λ j represent the shadow prices for equations (3.57) and (3.58), obtained from
the dual of (3.56)-(3.61). Following the idea of duality, a new pattern g is a good
candidate to improve the existing solution if:

NT
∑
j=1

λ j(peg , j − pec , j) > 0, (3.62)

where c represents the chosen pattern in the current solution of the main problem
(i.e. y i ,c = 1). In practice, λ j appears to be either −1, 0 or 1. If equation (3.57)
is strictly respected, λ j = 1 and the new pattern is encouraged to generate more
electricity in this time interval than in the selected pattern. On the opposite, if

equation (3.58) is strictly respected, λ j = −1 and the new pattern is encouraged to
generate less electricity in this time interval than in the selected pattern. In this way

the newly generated pattern is optimized towards the output of the main problem.

However, this does not necessarily mean that this pattern can be automatically

selected in the new solution of the main problem, since newly added patterns of

other microCHPs (by solving these sub problems) could lead to di�erent choices

for this speci�c microCHP. So, the main problem has to be solved completely at

each visit.

�e second requirement (g is locally feasible) is formalized by the ILP formu-
lation of the sub problem (3.63)-(3.79), which follows from the ILP formulation

in Section 3.3. Noteworthy to mention is the objective of maximizing the added

value of the electricity generation pattern in (3.63) and the notational change in

equation (3.66). We also point out that for each microCHP i this sub problem has
to be solved individually.

max

NT
∑
j=1

λ j(peg , j − pec , j) (3.63)

x ij ∈ {0, 1} ∀ j ∈ J (3.64)

g ij = G imaxx ij −
N iup−1
∑
k=0

Ĝ ik+1start
i
j−k

+

N idown−1
∑
k=0

Ǧ ik+1stop
i
j−k ∀ j ∈ J (3.65)

peg , j = α i g ij ∀ j ∈ J (3.66)

start ij ≥ x ij − x ij−1 j = 2 −MR i , . . . ,NT (3.67)

start ij ≤ x ij j = 2 −MR i , . . . ,NT (3.68)

start ij ≤ 1 − x ij−1 j = 2 −MR i , . . . ,NT (3.69)
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stopij ≥ x ij−1 − x ij j = 2 −MO i , . . . ,NT (3.70)

stopij ≤ x ij−1 j = 2 −MO i , . . . ,NT (3.71)

stopij ≤ 1 − x ij j = 2 −MO i , . . . ,NT (3.72)

start ij ∈ {0, 1} j = 2 −MR i , . . . ,NT (3.73)

stopij ∈ {0, 1} j = 2 −MO i , . . . ,NT (3.74)

x ij ≥
j−1
∑

k= j−MR i+1
start ik ∀ j ∈ J (3.75)

x ij ≤ 1 −
j−1
∑

k= j−MO i+1
stopik ∀ j ∈ J (3.76)

hl i1 = BL i (3.77)

hl ij = hl ij−1 + g ij−1 −H ij−1 − K i ∀ j ∈ J ∖ {1} ∪ {NT + 1} (3.78)

0 ≤ hl ij ≤ BC i j ∈ J ∪ {NT + 1} (3.79)

If constraint (3.62) is satis�ed, the pattern g is added to the set S i .
To speed up the computational time that is needed to �nd the optimal solution

of the sub problem for microCHP i, we may change the objective (3.63) into an
objective that aims at the binary commitment of the microCHP instead of on the

actual electricity generation:

max

NT
∑
j=1

λ j(x ij − x i ,c , j), (3.80)

where x i ,c , j is the binary commitment of the chosen pattern c. �e idea is that,
by focusing on unit commitment rather than on production, the side e�ects of

production (startup/shutdown) diminish, which might have a positive in�uence on

the outcome of the planning process.

Algorithm

To summarize, the solution method is given in Algorithm 3. Initially, the pattern

sets of microCHPs i consist of a single pattern in each set; this pattern is optimized
to maximize its local pro�t. In each iteration, the main problem is solved �rst, a�er

which for eachmicroCHP the sub problem is solved and new feasible and improving

patterns are added. Based on experience we set the maximum running time of

�nding a solution for the main problem on 60 seconds and for the sub problem

on 10 seconds for the electricity generation based objective and on 1 second for

the binary decision based objective. Note that for both sub problems the resulting

electricity patterns are always used in the main problem (instead of the binary

decision variables). �e stopping criteria are twofold. For the routine to continue,

we demand that at least one sub problem leads to an improvement. In addition to

that we require that the main problem always �nds an improvement for the global

objective value. If one of these requirements is not satis�ed, the heuristic stops.
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Algorithm 3 Column generation
init S i for all i
solve main problem

for all i do
solve sub problem

end for
while stopping criteria not met do

for all i:
NT
∑
j=1

λ j(pe i ,g , j − pe i ,c , j) > 0 do

S i ← S i ∪ g
end for
solve main problem

for all i do
solve sub problem

end for
end while

3.7.3 results

In this section we show the results for the small and medium instances. We distin-

guish two variants of the column generation technique. �e �rst variant uses the

sub problem that aims at electricity generation (3.63), whereas the second variant

uses objective (3.80). �e column generation approach is modelled in AIMMS

using CPLEX 12.2.

Results for the small instances

Table 3.13 shows the results for the small instances, where the local objective is

oriented at electricity generation, whereas Table 3.14 gives the results for when the

objective is based on the on/o� decisions. Problem instances I(8, 1), I(9, 1) and
I(10, 1) for this second variant show slightly worse solutions in comparison to the
optimal values. Although the desired production pattern is completely free in these

instances, the local objective that focuses on the on/o� decisions rather than on the

electricity output gives the reason for this di�erence.

Both tables show some instances for which the deviation from the desired

generation bounds is not 0. However, in comparison with the results for the local

search method the amount of deviation remains relatively small, especially for the

‘larger’ small instances of 8, 9 and 10 microCHPs. �is trend is continued for the

medium instances.

Results for the medium instances

Table 3.15 and 3.16 present the average results of the medium instances, categorized

by the number of houses, the production bounds variant and the number of time in-
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instance solution instance solution
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N v
a
ri
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t

z m
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x

N

ti
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e
(s
)

it
e
ra
ti
o
n
s

m
is
m
a
tc
h

1 1 1.147 0.00 1 0 6 10 0.882 0.52 2 0

1 2 0.709 0.00 2 0 7 1 1.156 0.26 1 0

1 10 0.709 0.00 2 0 7 2 0.937 0.53 2 0

2 1 1.236 0.00 1 0 7 3 0.818 0.52 2 0

2 2 0.915 0.00 2 0 7 4 0.818 0.53 2 0

2 3 0.884 0.00 2 0 7 5 0.918 0.52 2 0

2 4 0.884 0.00 2 0 7 6 0.923 1.06 4 0

2 5 0.884 0.00 2 0 7 7 0.885 1.06 4 100

2 6 0.884 0.00 2 0 7 8 1.069 0.51 2 0

2 10 0.884 0.00 2 0 7 10 0.871 1.04 4 0

3 1 1.197 0.00 1 0 8 1 1.156 0.26 1 0

3 2 1.197 0.00 1 0 8 2 0.818 0.55 2 0

3 3 0.959 0.26 2 0 8 3 0.818 0.55 2 0

3 4 0.959 0.26 2 0 8 4 0.818 0.51 2 0

3 5 0.959 0.25 3 100 8 5 0.948 0.53 2 0

3 10 0.959 0.25 3 100 8 6 0.944 0.52 2 0

4 1 1.183 0.00 1 0 8 7 0.875 1.56 5 500

4 2 0.929 0.25 2 0 8 8 0.971 0.53 2 0

4 3 1.004 0.27 2 0 8 9 0.960 0.80 3 0

4 4 1.004 0.26 2 0 8 10 0.888 1.84 5 1100

4 5 0.910 0.27 2 0 9 1 1.153 0.27 1 0

4 6 0.956 0.27 2 0 9 2 0.811 0.78 2 0

4 8 0.920 0.79 4 700 9 3 0.811 0.80 2 0

4 9 0.920 0.78 4 1500 9 4 0.811 0.80 2 0

4 10 0.946 0.52 3 2150 9 5 0.927 0.78 2 0

5 1 1.164 0.25 1 0 9 6 0.910 0.53 2 0

5 2 0.991 0.53 2 0 9 8 1.097 0.53 2 0

5 3 0.931 0.53 2 0 9 9 1.021 1.33 3 0

5 4 0.904 0.52 2 0 9 10 0.892 1.08 3 0

5 5 0.904 0.51 2 0 10 1 1.176 0.52 1 0

5 8 1.036 0.81 3 400 10 2 0.912 0.78 2 0

5 10 0.943 0.53 3 350 10 3 0.937 0.80 2 0

6 1 1.163 0.26 1 0 10 4 0.839 0.78 2 0

6 2 1.015 0.52 2 0 10 5 0.973 0.80 2 0

6 3 1.015 0.53 2 0 10 6 0.939 0.77 2 0

6 4 1.003 0.53 2 0 10 7 0.903 1.58 4 0

6 5 0.979 0.53 2 0 10 8 1.037 0.78 2 0

6 6 0.918 0.53 2 0 10 9 1.020 2.92 5 100

6 8 1.052 0.78 3 0 10 10 0.893 3.73 7 50

Table 3.13: Results for the column generation method applied to the small instances

(local objective is electricity generation)

tervals in the planning horizon. Both tables show a large decrease in the error value,

which may result from the more direct search towards minimizing the deviation

from the desired aggregated electricity bounds. �e error increases linearly in the

number of houses, which is no surprise. Compared to the error development in the

local search method and the approximate dynamic programming based method,

we now see behaviour that can be explained when we di�erentiate the error to

the production pattern variant or to the number of intervals. If we di�erentiate

the error to the production pattern variant, this shows the natural trend that the

tighter the bounds are the larger the error is. However, this error is much smaller

than for the local search method. When we increase the number of intervals (and

thus, increase the �exibility of the planning problem), we now see an improvement
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1 1 1.147 0.00 1 0 6 10 0.911 0.80 4 450

1 2 1.050 0.00 2 0 7 1 1.156 0.25 1 0

1 10 1.050 0.00 2 0 7 2 1.080 0.52 2 0

2 1 1.236 0.00 1 0 7 3 0.964 0.53 2 0

2 2 0.890 0.00 2 0 7 4 0.841 0.53 2 0

2 3 0.995 0.00 2 0 7 5 1.015 0.52 2 0

2 4 0.995 0.00 2 0 7 6 0.915 0.80 3 0

2 5 0.995 0.00 2 0 7 7 0.920 1.56 6 100

2 6 0.995 0.00 2 0 7 8 0.929 0.26 2 0

2 10 0.995 0.00 2 0 7 10 0.927 1.04 4 250

3 1 1.197 0.00 1 0 8 1 1.154 0.25 1 0

3 2 1.197 0.00 1 0 8 2 1.041 0.53 2 0

3 3 0.899 0.00 2 0 8 3 0.938 0.53 2 0

3 4 0.899 0.00 2 0 8 4 0.831 0.51 2 0

3 5 1.017 0.25 3 150 8 5 0.957 0.53 2 0

3 10 1.017 0.25 3 150 8 6 0.894 0.53 2 0

4 1 1.183 0.00 1 0 8 7 0.876 1.33 5 0

4 2 0.892 0.00 2 0 8 8 0.945 0.51 2 0

4 3 1.090 0.25 2 0 8 9 0.977 1.06 4 0

4 4 1.000 0.26 2 0 8 10 0.878 3.98 7 550

4 5 0.883 0.26 3 0 9 1 1.151 0.26 1 0

4 6 0.984 0.26 2 0 9 2 1.018 0.53 2 0

4 8 0.825 0.53 4 700 9 3 1.050 0.52 2 0

4 9 0.914 0.53 4 1500 9 4 0.915 0.51 2 0

4 10 0.946 0.52 4 1450 9 5 0.931 0.53 2 0

5 1 1.164 0.27 1 0 9 6 0.909 0.53 2 0

5 2 0.863 0.26 2 0 9 8 1.003 0.51 2 0

5 3 0.902 0.26 2 0 9 9 1.046 0.78 3 0

5 4 0.941 0.25 2 0 9 10 0.905 1.33 4 0

5 5 0.941 0.25 2 0 10 1 1.174 0.26 1 0

5 8 1.056 0.52 3 400 10 2 1.010 0.53 2 0

5 10 0.942 0.78 4 0 10 3 1.010 0.53 2 0

6 1 1.163 0.26 1 0 10 4 0.832 0.53 2 0

6 2 0.999 0.53 2 0 10 5 0.900 0.80 2 0

6 3 0.938 0.52 2 0 10 6 0.930 0.53 2 0

6 4 1.041 0.26 2 0 10 7 0.911 1.34 4 0

6 5 0.917 0.52 2 0 10 8 1.107 0.52 2 0

6 6 0.868 0.26 2 0 10 9 0.886 6.88 6 50

6 8 0.941 0.53 3 0 10 10 0.876 4.54 7 50

Table 3.14: Results for the column generation method applied to the small instances

(local objective is binary commitment)

(a general decrease) of the error, which we did not see before in the local search

method. �e error decreases for the switch from 24 to 48 intervals and only shows

a minor increase for the switch from 48 to 96 intervals, which is an improvement

when compared to the results for the approximate dynamic programming based

method. �is minor increase can origin from the time limit of 60 seconds on the

main problem, which results in prematurely abortion of solving the main problem.

Note that the sub problems are o�en solved faster than the limits of 10 respectively

1 seconds. However, in the 9 extra seconds for the electricity based objective on

average signi�cant improvements are made for 48 intervals and for 96 intervals,

which justi�es the choice for this increased computational time limitation.

When we compare the two variants of the column generation approach, the
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houses z l s/N time (s) i terat ions error in f eas . (%)
25 0.896 316.0 3.8 978 41.7

50 0.873 622.5 3.9 1998 41.7

75 0.901 939.1 3.9 3025 41.7

100 0.878 1223.7 3.9 3925 41.7

produc t ion
pattern z l s/N time (s) i terat ions error in f eas . (%)
11 0.840 362.1 1.8 0 0.0

12 0.951 612.5 2.8 1283 33.3

13 0.900 809.6 4.0 3367 33.3

14 0.856 1317.1 7.0 5277 100.0

interval s z l s/N time (s) i terat ions error in f eas . (%)
24 0.956 22.8 3.4 7141 75.0

48 0.848 891.7 4.0 116 25.0

96 0.856 1411.4 4.3 189 25.0

Table 3.15: Results for medium instances (local objective is electricity generation)

houses z l s/N time (s) i terat ions error in f eas . (%)
25 0.898 104.6 4.2 950 33.3

50 0.884 128.0 3.8 1919 33.3

75 0.901 191.8 3.8 3059 41.7

100 0.907 237.4 3.8 3917 41.7

produc t ion
pattern z l s/N time (s) i terat ions error in f eas . (%)
11 0.846 56.5 1.8 0 0.0

12 0.986 77.0 2.6 1283 33.3

13 0.899 116.3 3.8 3367 33.3

14 0.860 412.1 7.4 5194 83.3

interval s z l s/N time (s) i terat ions error in f eas . (%)
24 0.969 38.5 3.7 7141 75.0

48 0.859 181.2 3.9 19 12.5

96 0.864 276.6 4.1 224 25.0

Table 3.16: Results for medium instances (local objective is binary commitment)

variant with the focus on the binary decision variables in the sub problem shows a

clear advantage in computational e�ort. However, note that this advantage dimin-

ishes as the heuristic is parallellized on calculating entities close to each microCHP

appliance. Since the performance of both heuristics is similar for the objective value,

the number of iterations and the error value, and since the binary commitment

variant even shows a smaller percentage of infeasible solutions, we prefer this variant

over the variant with a focus on the actual electricity output. An explanation for the

(slightly) worse performance of this electricity led variant could be that too much

attention is drawn to the apparently negligible startup and shutdown behaviour of

the microCHP.
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3.7.4 lower bounds for a special type of instances of the microchp

planning problem

�e developed heuristics in this chapter show that feasibility of the problem of

maximizing pro�t, while satisfying global electricity bounds, is not easily reached.

We want to illustrate the bene�ts of the column generation technique with respect

to this feasibility aspect. �erefore we derive lower bounds on the guaranteed mini-

mal (absolute) deviation (which we call mismatch) between possible and desired

generation for a special type of problem instances. �en we show that the column

generation technique �nds solutions that are equal or at least very close to these

lower bounds. In this example we focus on the problem ofminimizing themismatch

instead of maximizing the pro�t, since the main objective of this section is to show

the feasibility aspects of the problem.

Special type of problem instances

�e special type of instances we consider in this section is the set of problem

instances for which we have no startup and shutdown behaviour: the electricity

generation has a one to one correspondence to the binary on/o� decisions. We

choose for this set of problem instances to clarify the principle e�ect of the column

generation technique, which is to minimize the deviation from the global electricity

bounds. In this setting the computational results show that the solution that is

found is close to or even equal in many instances to a derived lower bound on the

mismatch for these instances.

In principle it is also possible to derive lower bounds for other types of instances.

However, the startup and shutdown behaviour has an undesirable e�ect. Namely,

this side e�ect in�uences the proposed calculation of the lower bounds in such a

way that we cannot identify the origin of the gap between these lower bounds and

the foundmismatch: is this gap mostly due to a weak estimate of the lower bound or

due to the inability of the column generation method to �nd a good mismatch? For

this reason we neglect startup and shutdown e�ects in this section. In this way we

can concentrate completely on the binary commitment of microCHP appliances.

Simpli�cations for the special type of problem instances

�e formulation of the sub problem (3.63)-(3.79) can be simpli�ed for the special

type of instances. For the main problem it su�ces to know that the patterns have

been checked for feasibility before; these feasible patterns are �xed input data for

the main problem. �e feasibility check is simpli�ed by using two parameter sets,

specifying in each interval j the minimum number of intervals the microCHP
generator i should have run (MinOn i , j) and the maximum number of intervals
the generator could have run (MaxOn i , j) up to and including the current interval
j. �ese parameters MinOn i , j and MaxOn i , j are derived from the same heat
demand pro�les as we used in the medium instances for the pro�t maximization

objective. �e calculations that we perform to derive these parameters exclude

startup and shutdown behaviour, as this is not included in these special instances,
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but include the use of a heat bu�er (heat demand and periodical heat loss). Technical

runtime/o ime constraints of the microCHP are auromatically ful�lled by using

time intervals of half an hour. If the starting patterns in S i are chosen feasible, all
possible solutions in the eventual set are feasible, since the newly generated patterns

are always feasible.

For the considered special case the sub problem of the column generation is

now given by the following ILP formulation for microCHP i using half an hour
intervals:

max

NT
∑
j=1

λ j(peg , j − pec , j) (3.81)

j

∑
k=1
peg ,k ≤

1

2
MaxOn i , j ∀ j ∈ J (3.82)

j

∑
k=1
peg ,k ≥

1

2
MinOn i , j ∀ j ∈ J (3.83)

2peg , j ∈ {0, 1} ∀ j ∈ J , (3.84)

where from all locally feasible patterns the one is chosen that maximizes the added

value to the main problem. �e factors 2 and 1
2
are used, since we use time intervals

of half an hour andMaxOn i andMinOn i are de�ned in time intervals. If constraint
(3.62) is satis�ed, the pattern pe i ,g is added to the set S i .

Lower bound calculation
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(a) �e total desired production and the total pos-

sible production result in a �rst phase lower bound
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(b) �e second phase of the lower bound calcula-

tion and the resulting lower bound improvement

Figure 3.19: �e calculation of the lower bound of the group planning problem

�e lower and upper bounds P l ower and Pupper (representing the desired pro-
duction pattern) and the possible production boundsMaxProd i andMinProd i
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derived fromMaxOn i andMinOn i (MaxProd i ∶= 1

2
MaxOn i andMinProd i ∶=

1

2
MinOn i) form the basic input parameters of a problem instance. To derive a
theoretical lower bound zLB for the objective, we only look at these parameters.
Since we have a minimization problem and the sum of slack and excess variables

cannot be negative, the lower bound zLB is at least 0.

�e calculation of the lower bound works in phases. In each phase a minimal

guaranteed mismatch (slack or excess) zex traLB is found and added to the current

lower bound.

In the �rst phase, the additional value of the lower bound zex traLB equals:

zex traLB = max
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j

∑
k=1
P l owerk −∑

i
MaxProd i , j

∑
i
MinProd i , j −

j

∑
k=1
Pupperk

0.

(3.85)

�is value equals the maximum deviation of the aggregated possible production

from the aggregated desired production pattern over all intervals. An example of

the results for this phase is shown in Figure 3.19a, where the aggregated minimal

mismatch per time interval is given by the gray area. Amaximumdi�erence is found

between the maximal possible production and the minimal desired production at

7.5 hours, with a value of 93. So, in this example, the theoretical lower bound has

now improved from 0 to 93.

�e �rst value of j for which a positive zex traLB is found is the starting point r for
the calculation of the next phase. �is starting point is important in two ways. First,

themismatch in previous intervals cannot be undone, since we only look at intervals

j > r. Secondly, the starting point r o�ers a natural reset point; we can take our
losses up to this interval (i.e. the mismatch in the previous intervals) and start with

a renewed mismatch calculation. �is reset point requires that the sum of desired

maximum (minimum) production upto and including interval r can be replaced
by the maximum (minimum) possible production upto and including interval r.
Resetting to other values is either not allowed (in this case these total productions are

larger (smaller) than the maximum (minimum) possible production and, therefore,

not possible at r) or would increase the value of zex traLB . Considering this second

option, these values are not fully incorporated in the current lower bound. More

precisely, if these values are realized in a planning, the achieved mismatch upto and

including r would increase by the di�erence to the maximum (minimum) possible
production. So,∑

j
k=1 P

l ower
k can be replaced by∑i MinProd i ,r +∑

j
k=r+1 P

l ower
k and

∑
j
k=1 P

upper
k by∑i MaxProd i ,r +∑

j
k=r+1 P

upper
k . Again we look for mismatch in the
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future (time intervals j > r):

zex traLB = max
j>r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∑
i
MinProd i ,r +

j

∑
k=r+1

P l owerk ) −∑
i
MaxProd i , j

∑
i
MinProd i , j − (∑

i
MaxProd i ,r +

j

∑
k=r+1

Pupperk )

0.

(3.86)

In the example, the second phase calculation is shown in Figure 3.19b, where an

additional theoretical lower bound zex traLB of 83 is found. �e theoretical lower bound

is now: zLB = 93+83 = 176. �is process can now be iterated until no further positive
values occur in the calculation of (3.86). Note that at each reset point the ‘direction’

of mismatch changes: based on the de�nition of r, we know that an additional
mismatch in the same direction cannot occur, since the desired bounds are reset by

the maximum value of the previous iteration. However, an additional mismatch

in the other direction may always occur, although this additional mismatch per

iteration is bounded by the smallest additional mismatch in the previous iteration.

Scenario
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Figure 3.20: An example of a desired production pattern; a sine with amplitude 30

and period 18

We set up a scenario to answer the following kind of problem: the de�ned

instances should provide a framework to test the quality of the column generation

technique.

To support this question, we focus on variation in the o�ered/desired patterns

and keep the possible production the same for the di�erent instances. �e variation

is created by using sine functions, where we vary both in amplitude and in period.

�e instances consist of a group of 100 microCHPs and 48 time intervals in a

horizon of one day. �e group size is too small to be able to act on the electricity
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market at the moment, since the microCHP generates at the 1 kW level. However,

this size gives a good indication of the possibilities of the planning method. Deci-

sions are made on an half an hour basis. �is is more �ne grained than required,

since the day ahead electricity market works on an hourly basis. However, using

this setting the planning problem gets more realistic (and o�ers more possibilities

for variation). �e production patterns can be simply converted to hourly blocks

when we want to transform the planning to the electricity market.

�e maximum and minimum possible numbers of runtime intervalsMaxOn i
andMinOn i di�er permicroCHP and are derived directly from the heat demand in
the medium instances. As mentioned before, they remain the same in all instances;

variation is applied to the desired production pro�le. �e aggregated values of the

possible production are shown in Figure 3.19a.

�e initial patterns in the sets S i are derived fromMaxOn i andMinOn i . �e
microCHP sub problem starts with two patterns, one resulting from the earliest

possible time intervals that the microCHP can be switched on, and one resulting

from the latest possible time intervals that the microCHP has to be switched on. In

the �rst case the microCHP stays on as long as the bu�er is not at its upper limit

and in the second case the microCHP stays o� as long as the bu�er is not at its

lower limit.

Upper and lower bounds of the desired production are de�ned, based on a

sine function and a constant. �e sine function is given (and equal) for both the

upper and the lower bound. �e constant for the upper bound is maximized such

that the total aggregated desired production stays within the limit given by the

total maximally possible production of all microCHPs. Likewise, the constant for

the lower bound is minimized, such that the total desired production is larger

than or equal to the total minimally possible production. In other words, the

upper bound Pupper is derived from the highest integer value of µupper for which a
given amplitude amp (in kW) and period per (in hours) result in a total desired
production that is still feasible, when only looking at the total possible production:

max µupper (3.87)

∑
j
Pupperj ≤

1

2
∑
i
MaxOn i ,NT (3.88)

Pupperj =
1

2
rnd(amp × sin( f (per) × j)) + µupper∀ j, (3.89)

where f (per) is the frequency corresponding to the given period per and rnd()
is a rounding function that converts to the nearest integer. Likewise, the lower

bound P l ower results from the lowest sine curve �tting in the possible minimum
production:

min µ l ower (3.90)

∑
j
P l owerj ≥

1

2
∑
i
MinOn i ,NT (3.91)

P l owerj =
1

2
rnd(amp × sin( f (per) × j)) + µ l ower∀ j. (3.92)
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�e �nal time interval in Figure 3.19a shows that the lower and upper bound of

the example �t within the possible total production domain. Figure 3.20 gives the

resulting individual values (in kW) of this example with amplitude 30 and period

18.

Using the sketched approach, an instance can be de�ned as a pair I′(amp, per)
and a solution as a tuple (I′(amp, per), zLB , z f ound). For the instances, we choose
amp ∈ {0, 1, . . . , 40} and per ∈ {2, 3, . . . , 24}.

Results

Figure 3.21 shows the calculated lower bounds for the instances in a surface plot.

�e found solutions of the column generation technique are plotted on top of that

surface plot. �e results show that a tight match to the lower bounds is found
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Figure 3.21: Calculated lower bounds and solutions derived from the column gener-

ation technique, for sines with varying amplitude and period

for all instances, which shows the strength of the column generation heuristic.

Besides that, the lower bound value depends on the combination of both period

and amplitude. A slow repetitive periodic behaviour of the desired aggregated
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electricity production and a large amplitude of the desired production function

lead to large lower bounds. On the other hand, a large amplitude combined with a

short sine period (i.e. a fast repetitive behaviour of the sine) results in a small value

for the lower bound, which is validated by the results. �is indicates for the Virtual

Power Plant case that we may ask relatively �uctuating production over the time

horizon, as long as the running average is close to the average possible production.

Positive/negative spikes in certain time intervals should be compensated for by

negative/positive spikes in time intervals that are close to the time interval under

consideration.
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Figure 3.22: Computation times related to the number of iterations for the column

generation technique

Figure 3.22 gives the computational times related to the number of iterations

(i.e. the number of newly generated patterns) for the column generation technique.

�is �gure shows a linear relation in the number of intervals, showing that the

computational e�ort for the sub problem does not increase when the number of

iterations grows. In the solution method we use a small modi�cation: we use an

LP-relaxation of the main problem during the iterations and solve themain problem

normally as a �nal stage a�er termination of the iterative process. �e in�uence of

this �nal stage is visible in the computational times: the time limit of 60 seconds is

(sometimes) reached in this �nal stage; and if so, it occurs only in this stage and

not during earlier iterations.

Remark on the results

Based on the results in the previous section one might think that the calculated

lower bound is always reached in the optimum. However, this is not the case. To

show this a simple counterexample is constructed in Figure 3.23.
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Figure 3.23: A counterexample for the natural �eet bounds

Figure 3.23a and 3.23b show the possible decision paths within the natural

bounds (the gray area) for two households equipped with a microCHP; Figure 3.23c

shows the combined decisions, including capacity constraints, for which the given

decision path in Figure 3.23d is impossible to follow. �is decision path stays within

the gray area, indicating that the lower bound on the deviation from the possible

production bounds is 0. Although the two generators may run simultaneously in

the fourth or in the ��h time interval, it is impossible to have the two generators

running simultaneously in both time intervals subsequently, due to the limited

possibilities for the second household in the fourth and ��h time intervals. �is

counterexample shows that the lower bound is not always reached.

3.7.5 conclusion

In this section a column generation technique is developed for the microCHP

planning problem. �is heuristic o�ers a special focus on minimizing the total

deviation from the desired aggregated production bounds (mismatch) for a group

of microCHPs. �is method outperforms the local search method when we look at

this deviation for the small and medium instances. Furthermore, we investigate a

special type of problem instances, and show that the found mismatch is close or
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equal to a calculated lower bound.

3.8 Conclusion

�is chapter introduces the microCHP planning problem, which consists of the

problem to plan the operation of domestic combined heat and power generators in a

cooperational setting of a Virtual Power Plant. Locally these microCHP generators

need to satisfy heat demand from the household, while globally the aggregated

electricity output of the microCHPs needs to ful�ll a desired production pattern.

�e operation of the microCHP itself is restricted to binary decisions to switch the

appliance on or o�; the related electricity output is then completely determined. In

the microCHP planning problem, the pro�t of the Virtual Power Plant on an elec-

tricity market is maximized and/or the total deviation from the desired aggregated

electricity output is minimized.

A mathematical description of the problem is given and it is shown that the

problem is NP-complete in the strong sense. Exact formulations by modelling

the problem as an Integer Linear Programming or a dynamic programming model

show that practical instances are indeed di�cult to solve in limited computational

time. �erefore, three heuristics are proposed. A local search method, based on

the dynamic programming formulation, shows a large improvement in computa-

tional time; the deviation from the desired bounds however asks for improvements.

An approximate dynamic programming approach shows interesting �rst results,

but needs further evaluation on larger problem instances. A column generation

technique o�ers a nice framework to minimize the deviation from the desired

aggregated electricity output. For simpli�ed instances it is shown, based on a lower

bound calculation, that this method can solve this deviation (close) to optimality.

For the di�erent approaches mainly only a basic variant is developed to explore

the di�erent concepts. Further research towards a real world implementation are

necessary. Both the local search method and the column generation method are

appropriate in the context of scalability. �e division in global aggregation/op-

timization problems and local optimization problems o�ers a framework that is

scalable.



CHAPTER4
Evaluation of the microCHP

planning through realtime

control

Abstract – �is chapter presents a short evaluation of the impact of demand
uncertainty on the microCHP planning problem. It also covers the other two steps
in the TRIANAmethodology, being the prediction step and the realtime control step.
In the context of the microCHP planning problem, the quality of local predictions
and the ability to cope with realtime �uctuations in demand are sketched. Finally,
possibilities of reserving heat capacity in heat bu�ers are depicted.

�e translation of the planned production of a Virtual Power Plant a day ahead to

the realtime control of the production process on the actual day has to deal with

di�erent obstacles. �e main cause of these obstacles is the uncertainty that comes

along with the predicted input of the planning process. �is uncertainty can be

found in the realtime behaviour of predicted parameters, such as the demand and

supply of individual appliances or households, but also in predicted parameters as

the prices of the electricity market. Whereas the latter type of predicted parameters

may have �nancial consequences, the �rst type of uncertainty can initiate a snowball

e�ect and can eventually lead to large deviations from the planning (e.g. causing

di�culties in the distribution/transmission grid) and can have economical/electrical

consequences (blackouts).

Price uncertainty occurs for example at day ahead markets, which are analyzed

in more detail in Chapter 5. �is uncertainty di�ers from demand uncertainty (of

heat, in our case) in the sense that price uncertainty reveals itself on beforehand

when the day ahead prices are settled during the clearing of the market. �is allows

113
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the operator of a Virtual Power Plant to consider the in�uences of this uncertainty

(i.e. the outcome of the bidding process of the electricity market) and anticipate to

this by a renewed execution of the planning method. Uncertainty of heat demand

is revealed in an online setting, meaning that only during a certain time interval

the exact heat demand of this time interval is known.

In general there are two possibilities to cope with this demand uncertainty in

the transition from a planning to a practical realization. As a �rst option, to relieve

the realtime control, stochastic in�uences could be incorporated in the planning

step already. �is can be done e.g. by using probabilistic constraints or by designing

(demand) scenario trees that take demand uncertainty into consideration. Scenario

trees are most common in stochastic unit commitment approaches [40, 41, 42, 60,

105, 116, 119]. On the other hand, we could also deal with demand uncertainty in

the realtime control step. In this case, the planning serves as a guideline, which the

realtime control has to follow as close as possible.

We choose for this second option by using a combination of prediction/plan-

ning and realtime control that accounts for demand uncertainty. �is choice is

accompanied by the nature of the demand; we study large amounts of appliances

with individual demands, each with its own uncertainty, instead of centralized

demand. In this case scenario trees are not helpful. Although this choice shi�s the

responsibility for coping with demand uncertainty to the realtime control step, the

planning step can aid in the sense that a heat bu�er reservation can be made for

capturing (part of) the demand uncertainty.

�e focus of this thesis is on planning problems. However, in this chapter we

give a short overview of the other two steps in the TRIANA methodology, for sake

of completeness. Hereby the focus is on results related to the microCHP use case.

�e quality of the prediction step is crucial for the extent to which realtime control

needs to be able to cope with demand uncertainty. �erefore, we focus on the

quality of the prediction in Section 4.2 and on the ability to cope with realtime

demand uncertainty in Section 4.3. �e reservation of heat capacity in Section

4.4 shows the possibilities that a discrete planning can o�er to deal with realtime

demand uncertainty.

4.1 Realtime control based on planning and prediction

�e TRIANA 3-step control methodology for Smart Grids introduced in Chap-

ter 2 consists of three major steps in which a distributed energy infrastructure is

optimized and controlled. As a �rst step a prediction is needed for the demand

of di�erent types of energy consumption/production up to a very small scale (i.e.

at a household scale). �is prediction serves as basic input for the planning step,

which is the second step in the control methodology. In this step the possibilities

for production, storage and consumption are optimized, for example towards the

objectives that are presented in Chapter 3. �e prediction and planning steps are

executed in advance; in general one day before the actual demand/supply takes

place, a prediction and a planning is made. �e third step of the TRIANAmethodol-
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ogy is to manage the actual demand/supply online: decisions are required for each

appliance at a given time interval, for that same time interval. When the prediction

is perfect, then the appliances can be realtime controlled by simply following the

planning outcome. However, when the prediction is not perfect, the planned oper-

ation cannot always be followed. �erefore a realtime control method is needed,

that reacts to this realtime deviation from the predicted values. Of course, this

realtime control wants to stick to the planning as close as possible. In Section 4.2

we analyze the implications of the quality of the heat prediction (demand uncer-

tainty) to the amount of �exibility that we want to have in the microCHP planning

problem (the rest capacity of the heat bu�er that is not available for the planning

problem). Section 4.3 summarizes results obtained by the realtime control step

for the microCHP use case. Additionally, an evaluation of necessary heat capacity

reservations to compensate for demand uncertainty is given in Section 4.4.

4.2 Prediction

Prediction of local (household) electricity demand is done in di�erent ways (e.g. [31,

120]). For a prediction of the heat demand in households, which is most interesting

for the microCHP case, we give a short overview of the work of [29]. �is prediction

is done by a neural network approach. Important input parameters are the heat

demand data of one upto several days before the regarded day, predicted windspeed

information for the regarded day and the day before, and outside temperature

information for the regarded day and the day before. Continuous relearning in a

sliding window approach shows good results.

�e quality of the heat demand prediction can be measured by calculating the

Mean Absolute Percentage Error (MAPE) and the Mean Percentage Error (MPE).

�e MAPE is de�ned as follows:

MAPE = 1

24

24

∑
j=1

∣H predj −Hac tualj ∣

F j
(4.1)

F j =
⎧⎪⎪
⎨
⎪⎪⎩

Hac tualj if Hac tualj ≠ 0
1

24 ∑
24
k=1 Hac tualk otherwise.

(4.2)

�e MPE is de�ned as follows:

MPE = 1

24

24

∑
j=1

H predj −Hac tualj

F j
(4.3)

F j =
⎧⎪⎪
⎨
⎪⎪⎩

Hac tualj if Hac tualj ≠ 0
1

24 ∑
24
k=1 Hac tualk otherwise.

(4.4)

�e quality of the prediction now is characterized by the total error Etotal , which is
de�ned as:

Etotal = MAPE + ∣MPE∣. (4.5)
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house Sunday Monday Tuesday Wednesday

MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 0.43 -0.17 0.66 -0.09 0.61 0.06 0.64 -0.03

2 0.85 0.30 0.69 0.00 0.97 0.51 0.46 -0.12

3 0.20 0.01 0.16 -0.01 0.16 -0.08 0.23 -0.06

4 0.39 -0.14 0.31 -0.03 0.50 -0.02 0.50 -0.08

house Thursday Friday Saturday

MAPE MPE MAPE MPE MAPE MPE

1 0.71 -0.01 0.53 -0.16 0.47 -0.10

2 0.68 0.03 0.47 -0.19 0.86 0.35

3 0.19 -0.06 0.21 -0.06 0.22 0.01

4 0.40 -0.22 0.50 -0.04 0.45 -0.05

Table 4.1: �e results for MAPE and MPE using Simulated Annealing for di�erent

weekdays for 4 houses

In the training process of the neural network, the mean squared errors are

minimized. By using a validation set, the evaluation of the training is measured

by calculating the sum of MAPE and absolute MPE. Di�erent selections of input

parameters for the neural network are searched in a Simulated Annealing frame-

work. �e best results using this framework for some real world data are presented

in Table 4.1. �e prediction has an average MAPE of 0.48, which is the average of

the MAPE values corresponding to 4 houses and 7 di�erent types of weekdays of

the table. Likewise, the average MPE is −0.02. If we consider individual hours, we

mispredict the average hourly heat demand by almost 50%, but if we look at the

overall prediction for a complete day, we are almost correct. �is prediction is not

ideal, but of a quality which may be su�cient for the planning process, since o�en

the error is that a peak in demand is predicted in a time interval next to the real

peak; i.e. mainly variations within small time di�erences occur.

As we can see from the average MPE (which is around 0) as a measure for the

selected input data for prediction, this selection has a tendency to underestimate

the prediction, since the actual heat demand values are used as a denominator in

the MPE calculation.

4.3 Realtime control

�e basis for the realtime control consists of the energy model that has been pre-

sented in Chapter 2. �is model gives a �ow problem formulation of di�erent types

of energy for a single time interval, in which balance plays a crucial role. Balance

within this energy �ow model guarantees a match between supply and demand.

Also it resembles strong similarities with the way the grid infrastructure is organized,

which makes it easy to incorporate these network constraints. However, balance

can o�en be realized in many di�erent ways, since there exist many elements for

which a decision has to be made.

To select the best option that balances the model, a decision problem is solved

for the given time interval. �is problem has an objective that di�ers from the earlier

presented objectives of the microCHP planning problem, by minimizing arti�cial

total costs that are derived from certain cost functions for each element in the �ow
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model. �is change in objective has two reasons. First, the balancing problem has

to be solved in realtime, which poses a stronger time limit on the realtime control

than on the planning process. �erefore we want to focus on balancing constraints

only, and relax other possible constraints by using cost functions. Secondly, the

energy �ow model is not exclusively aimed at incorporating the planned operation

of a �eet of microCHPs, but also at the possible inclusion of di�erent types of

generation, storage and consumption. To include and combine these - possibly

con�icting - objectives, the balancing problem uses generalized cost functions for

the elements for which a decision has to be made. �ese cost functions consist of

arti�cial costs against consumed, produced or stored amounts of energy. Of course

the cost functions can depend on the outcome of the planning, which means that

the cost function can vary over time. �e objective of the balancing problem is to

minimize these arti�cial costs. It is of importance in the determination of these cost

functions that infeasible state changes for the di�erent elements are penalized in

the cost function by large arti�cial costs, such that infeasibility is prevented (unless

it is impossible to �nd a balance without including such a high cost).

�e optimization problem of minimizing the arti�cial costs, while balancing

the energy �ow model can be summarized as follows:

Minimizing the costs of balancing the energy �ow model

INSTANCE: Given is an energy �ow model, consisting of a graph

G = (V ,A), where V = E ∪ P (E ∩ P = ∅) and cost functions fe(xe)
associated with decisions xe for elements e ∈ E, whereby xe results in �ows
ae p to pools p ∈ P and in �ows ape from pools p ∈ P that are in balance for
element e.
OBJECTIVE: Minimize the total cost functions ∑

e∈E
fe(xe), such that

balance is preserved for all pools p ∈ P:∑
e∈E

(ae p − ape) = 0.

Model predictive control

In di�erent time intervals the cost functions for the same appliance can vary. �is

gives the possibility to take planning decisions into account and to follow these

planning decisions as good as possible. However, this process focuses only on the

current interval. It may be worthwhile to anticipate on future time intervals as

well, since this may prevent the realtime controller to take relatively good decisions

for the current interval, that lead to severe problems in later time intervals. �at

means that it may be a good idea for the realtime control method to deviate from

the planning at a current time interval, although it is currently possible to follow it,

in order to be more close to the planning in later time intervals, compared to when

the current planning would have been followed.

�is setting of looking ahead in time is called model predictive control (MPC).

It simply consists of minimizing the total costs of sequential balancing problems,
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and using only the results for the decision variables in the �rst considered time

interval to perform realtime operation.

Several use cases in [94] show that the realtime control step is able to follow a

planning upto a large extent. Furthermore, it is shown that the addition of MPC

can result in an improved ability to cope with realtime �uctuations.

4.4 Evaluation of heat capacity reservation

Although the realtime control method shows that we can follow a plan for a VPP

of microCHPs quite closely, even if we do not reserve free space in the heat bu�er,

we are interested in the amount of heat bu�er space that we would have to reserve,

to be fully able to compensate for demand uncertainty by perfectly following the

planning. �is means that we want to achieve a feasible operation in realtime, while

sticking exactly to the planned operation. We perform this way of evaluating heat

bu�er reservation in the presence of demand uncertainty on two of the tightest

medium instances, being problem instance I(100, 14) for 24 and for 48 intervals.
We use the same heat demand pro�les and heat bu�ers of these instances

as we de�ned them in the previous chapter. For the heat bu�ers, the planning

uses a capacity of 10 kWh. �e demand pro�les now represent the predicted heat

demand H ipred , for the di�erent houses i ∈ I. We introduce demand uncertainty
to these predicted heat demand pro�les. �is is done by applying a normally

distributed deviation u ij to the di�erent hours j of the predicted heat demand of
house i with mean µ and standard deviation σ . �ese i.i.d. variables u ij ∈ N(µ, σ)
are added to the predicted heat demand to create real heat demandH ireal arti�cially:
H ireal , j = H

i
pred , j + u

i
j . �e parameters µ and σ are chosen such that the average

MAPE and MPE of Table 4.1 are approximated. For di�erent possible choices of

σ ∈ {0, 200, 400, 600, 800, 1000}Wh the corresponding choices for µ are found,
such that values for MAPE and MPE are calculated that are the closest to the

ones in Table 4.1. Note that these additional uncertainties are skewed in the sense

that µ > 0 if σ > 0, due to the underestimation of the prediction. To see the

in�uence of an unskewed prediction that does not underestimate, we also apply

normal distributions with µ = 0 and the found values for σ in the MAPE/MPE
approximation.

Figures 4.1 and 4.2 show the maximum excess, maximum slack and the total

maximal necessary reserve capacity of all 100 heat bu�ers. �e maximum excess

ME (in kWh) is the largest excess (i.e. the overproduction that does not �t in the
heat bu�er) that occurs in all 100 houses. �e maximum slack MS (in kWh) is
the largest amount of heat demand that cannot be supplied, since there is too few

production of heat, over all 100 houses. �e maximum reserve capacity R (in kWh)
is the sum of the maximum slack and the maximum excess (note that this can be

larger than the maximum of the sum of slack and excess for all houses). If this

reserve capacity R is applied to the heat bu�ers of the houses, such that the total
capacity of the heat bu�ers equals R + 10 kWh, we can plan the operation of the
heat bu�er in the range [MS ,MS + 10], thereby not violating any form of real heat
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Figure 4.1: �e necessary bu�er reserve capacity for di�erent values of MAPE and

MPE for a planning using 24 intervals

demand. Figure 4.1 shows the results for the �rst instance, where a planning is made

for hourly intervals; �gure 4.2 shows the results for the second instance, where a

planning is made for half an hourly intervals. It is interesting to see that the results

are comparable for both instances, which indicates that the available freedom in

the planning problem is used towards the boundaries. For the skewed prediction

we see that excess hardly occurs; since the prediction is an underestimation of

the heat demand, the capacity of each heat bu�er is hardly exceeded. However,

this underestimation results in serious maximum slack capacity, indicating that

we cannot keep the production up with the real heat demand. For the unskewed

prediction we see a more even division betweenmaximum slack and excess capacity,

which can be expected since the uncertainty has µ = 0. �is results in a lower

total reserve capacity than in the unskewed prediction, showing that an improved

prediction that gets rid of the underestimation of the heat demand prediction is

useful. For the unskewed prediction, using heat bu�ers that are three times as large

as the capacity that is available for planning (i.e. 30 kWh) su�ces to be able to

remain following the planned operation completely, even with demand uncertainty

that is expressed by a MAPE around 1 and an MPE above 0.5 (the corresponding

values for the real heat demand that is based on N(0, 1000)). Note that a much

smaller heat bu�er reservation su�ces when realtime control is applied.
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Figure 4.2: �e necessary bu�er reserve capacity for di�erent values of MAPE and

MPE for a planning using 48 intervals (hourly prediction!)

4.5 Conclusion

�is chapter positions the microCHP planning problem in the TRIANA control

methodology. It further explains the interaction between prediction, planning

and realtime control. �is interaction is necessary when we want to cope with

demand uncertainty. TRIANA uses a model predictive control approach to cope

with this uncertainty of the predicted demand, which performs well. Furthermore,

we sketch the measures that a planner can take in reserving parts of the heat bu�er

capacity, such that the impact of demand uncertainty on the realtime control step

is diminished.



CHAPTER5
Auction strategies for the day

ahead electricity market

Abstract – �is chapter discusses bidding strategies for a Virtual Power Plant
that wants to operate on an electricity market. We distinct between two auction
mechanisms: uniform pricing and pricing as bid. For both mechanisms bidding
vectors are proposed that the VPP can o�er to the market, such that the resulting
quantity of the outcome of the auction is very close to the planned operation of the
VPP, and such that the expected pro�t is maximized. For unifom pricing we propose
a simple optimal strategy. In the case of pricing as bid we prove a lower bound on
the expected pro�t that depends on the probability density function of the market
clearing price.

A solution to the microCHP planning problem (treated in Chapter 3) consists of

a planning of the operation of individual microCHP appliances. �e aggregated

electricity output of the planned operation of a group ofmicroCHPs is of importance

in the concept of a Virtual Power Plant. Such a Virtual Power Plant eventually wants

to act on a (virtual) electricity market. In this chapter we treat the day ahead

electricity market, since this market suits the Virtual Power Plant well, due to the

short term notice on which heat demand predictions are made and due to the

relative strict capacity requirements, which makes the Virtual Power Plant less

suitable to act on a balancing market. We assume that a solution to the microCHP

planning problem is available on beforehand; i.e. a distribution of total electricity

generation over the time horizon of 24 hours is known, at the time the operator of

the Virtual Power Plant starts acting on the day ahead market. Of course for this

solution predictions of the prices on this electricity market may have been used as

input and, thus, the predictions may have in�uenced the planning. �e job of the

operator of the VPP is to sell the planned production to the electricity market; this

121
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is done by o�ering supply bids. �is job is made di�cult by the uncertainty of the

actual market clearing prices for the di�erent hours. �is uncertainty should be

accounted for in the supply bids in such a way that the probability of being allowed

to supply is large. Namely, the planned electricity quantities need to be generated

to a large extent anyhow, due to the local heat demand constraints of the individual

households. If these quantities are not settled on the day ahead market, they will be

accounted for and penalized on the balancing market.

In this chapter we concentrate on bidding strategies for di�erent auction mech-

anisms for the day ahead balancing market. �ese bidding strategies take into

account that we want a large probability of being allowed to supply the planned

amount in each hour, and such that we maximize the price that we receive for these

quantities. �e auction mechanisms that we study are uniform pricing and pricing

as bid.

Section 5.1 describes the general background of auction mechanisms on a day

ahead electricitymarket. �e speci�c requirements for the VPP to act on thismarket

are discussed in Section 5.2. Next, bidding strategies for the auction mechanisms

uniform pricing and pricing as bid are studied, where the focus is on quantity

and price of the outcome of the auction; the quantity should be close to a desired

amount and may have only a small variation, and the expected revenue (pro�t) is

optimized for normally distributed market clearing prices. Section 5.3 shows the

mechanism of uniform pricing and Section 5.4 the mechanism of pricing as bid.

Finally conclusions are drawn on how to act on the electricity market in Section 5.5.

5.1 Auction mechanisms on the day ahead electricity market

Electricity trading is subject to similarmarket principles as other economic activities.

In an electricity market demand and supply of electricity meet; based on demand

curves, which show the price that the consumption side is willing to pay related

to the quantity of traded electricity, and supply curves, which show the price that

the generation side wants to receive related to the quantity of traded electricity,

an electricity market price is settled. �is market clearing price is found at the

intersection of the aggregated demand curve and the aggregated supply curve.

Figure 5.1 shows an example of supply and demand curves. In Figure 5.1a two supply

curves for two di�erent generators are plotted. �e aggregated supply curve of these

two generators is depicted in Figure 5.1c. However, in the practice of an electricity

market a supply or demand curve consists of a limited number of price/quantity

tuples (p, q), that de�ne stepwise supply or demand functions. Figure 5.1b and 5.1d
show the same supply and demand curves of Figure 5.1a and 5.1c, but now they are

stepwise approximated.

In electricity markets, the price elasticity of electricity demand is really low [88].

�is results in steep demand curves, for which an example is shown in Figure 5.1c

and 5.1d.

In the day ahead electricity market supply and demand curves are o�ered for 24

hours, resulting in 24 independent auctions. For each hour, each supplier and each
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Figure 5.1: An example of supply/demand curves

retailer/consumer o�ers a vector of price and quantity tuples {(p1 , q1), (p2 , q2), . . . ,
(pT , qT)}; this is called a stepwise bid curve for a supplier/retailer. �ese prices and
quantities have the properties that p1 < p2 < . . . < pT and q1 < q2 < . . . < qT . �ese
vectors are aggregated for both the supply and the demand side, and the market

clearing price is found where both stepwise functions meet. For all suppliers which

have at least one bid (pk , qk) in their bid curve for which pk is below the market
clearing price p, the bid with the price closest to p but lower than or equal to p is
accepted. �e generation of electricity is never partially dispatched, meaning that

the cleared quantity is either 0 or equal to a certain quantity qt that belongs to a
bid in the set of bids {(p1 , q1), (p2 , q2), . . . , (pT , qT)}. In a practical situation the
operator of any kind of power supply has to construct its bids in such a way that

the operation of its assets is optimized. Usually this means that optimal bids are

constructed based on the relationship between expected revenue and costs (see e.g.

[18, 98, 132]). In the case of our Virtual Power Plant however, we do not consider

costs, since operational fuel costs are the responsibility of the households in our

business case. �is lack of costs has its implications on the construction of bidding

strategies. �ese strategies need to be applied to the 24 individual auctions for the
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day. However, these auctions are simultaneously settled. �is implies that we cannot

base our strategy for the auction of hour s on the outcome of the auctions for the
hours preceding s.

5.2 A Virtual Power Plant acting on a day ahead electricity

market

AVirtual Power Plant can operate on an electricity market with its available capacity.

Due to the daily nature of the underlying generation techniques in the VPP we

concentrate on short term markets. �e day ahead market suits the VPP well, since

it expects a supplier to simultaneously place bid vectors for each hour for a complete

day, which coincides with the aggregated generation for a complete day that has

been planned. A balancing market (intraday market/spot market/strip market)

is less suitable, since the online setting of this market o�ers too much risk for a

supplier which has an almost �xed amount of supply at each moment in time.

In the following we shortly sketch how the planning problem can be used in

a framework to �nd a desired total planned output that we want to auction. �is

framework is based on the insight that we derive from the lower bound calculation

in Chapter 3. �is insight can help us in the practical situation of the Virtual Power

Plant, in which we would like to act on an electricity market. In this case we want to

know that we can guarantee that a desired aggregated pattern can be reached by the

individual generators. In an exploratory phase, a sketch of the aggregated output

can be found, using the lower bound calculation as a guideline. �e actual planning

of the individual microCHPs can be postponed until a rough sketch is found that

satis�es the (pro�t maximization) objective of the owner of the Virtual Power Plant,

and that has a promising lower bound. Using this framework, we can �nd a detailed

planning for all individual houses, that results in a total output that is desirable to

auction on the market, and we can do this by saving a lot of computational e�ort.

Returning to the actions on the electricitymarket, wemodel price uncertainty as

follows. In the related planning problems, the operation of the VPP on the day ahead

market is indicated by using a (direct or indirect) objective value that maximizes

the pro�t on this electricity market. However, the prices to which the planning

problem optimizes are predictions of the electricity prices of the upcoming day.

�ese predictions are subject to uncertainty. �is uncertainty can be expressed by a

probability density function f (p) for the market clearing price. Yet these variable
prices have some interesting properties that can be used to develop a way of placing

bid vectors on the market.

�e calculated planning is executed based on the expectation of the price, and

is thus based on f (p). �is planning gives quantities for each hour that have to be
sold. As this selling is the primary goal of the VPP that acts on the day aheadmarket,

we have to guarantee almost for sure that the VPP gets the possibility to sell its

generated electricity (we call this winning the auction). Based on experience we ask

in our setup that 99% of the auctions should be won. In addition to that, we cannot

deviate too much from the planned quantities. �is means that the quantities in the
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submitted bid vectors all have to be real close to the desired amounts. �e received

price is of secondary importance, but is still optimized to be as large as possible. To

spread risks, in general the di�erences in prices belonging to di�erent bids in the

bid vector should be relatively large and depend on the density function f (p).
In the situation of our Virtual Power Plant we deal with very speci�c limitations

on the amount of electricity that can be o�ered. �ese limitations are obvious when

a planning has already been made. In this case it is important to develop a strategy

that respects the outcome of the planning process. To stay close to this outcome,

the quantities q that can be o�ered to the market are limited. �erefore one goal
of the bid construction focuses on guarantees on the amount of electricity that is

cleared, i.e. the auctioned quantity is close to the amount of electricity that we want

to sell. If the placement of bids is executed securely, we also want to maximize the

price for which the previously mentioned quantity is sold. �e second goal of the

bidding process namely is to maximize the expected revenue for the Virtual Power

Plant.

�e output of the bidding process gives a de�nitive division of the available

capacity over the time horizon, which might request for a renewed planning. If a

new planning is not possible or infeasible, we want this assignment to correspond to

the planned assignment, such that only small additional bids need to be o�ered to

a balancing market. Large necessary adjustments are namely undesirable, since we

may assume that the prices on the balancing market are not bene�cial for a market

player which has to o�er almost �xed amounts of electricity to this realtime market.

Ultimately, large adjustments might even not be tradeable on a balancing market

and lead to a situation where the VPP cannot be operated properly. �erefore we

want to prevent these large deviations occurring by designing auction strategies.

In the following we concentrate on electricity markets that are similar to the

short term day ahead market as applied in �e Netherlands [2]. Hourly market

bids (pst , qst) for hour s on this type of day ahead electricity market are cleared
simultaneously (independently) for a complete day (i.e. for 24 hours individual

prices are settled for which electricity is traded). �is implies that a bidding strategy

for hour s cannot be adapted based on the outcome of the market clearing of hour
s − 1. �e descriptor t ∈ {1, . . . , T} is used to distinguish between T di�erent bids
for the same hour (and for the same supplier).

5.2.1 the bid vector

Di�erent bids for the same hour are required to vary in quantity, since the quantity

is the cumulative quantity for a single supplier; without loss of generality we require

quantities qst to be strictly increasing. A minimum di�erence in quantity is set to
0.1 MWh for the APX Power NL day ahead auction [2] for hour s:

qst+1 ≥ qst + 0.1. (5.1)

Next to this necessary constraint, we additionally require that the prices of di�erent

bids in the same hour are di�erent, since wewant each bid to bemeaningful. Namely,

the occurrence of two bids for the same price and di�erent quantities makes the
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bid with the lowest quantity redundant. Moreover we require that prices pst are also
strictly increasing:

pst+1 > pst . (5.2)

�e combination of increasing prices accompanied by increasing quantities can

be simply explained by the natural desire of a supplier to o�er at least the same

amount when prices increase. Furthermore, for the prices on the day ahead market

an interval [−pmax , pmax] is given.
An example of a set of bids for one hour is depicted in Figure 5.2. It shows
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Figure 5.2: A price/supply curve for one hour on the day ahead market

a price/supply curve for one supplier. In this case six bids form a step function.

Similar step functions are given for other (supplying and demanding) actors on the

day ahead market. Based on these functions the auction is cleared. In its simplest

form, aggregate supply and demand curves are formed and the intersection of both

curves gives a market clearing price p, as indicated in the previous section. On the
day ahead market all products are settled against this price p; the largest bids that
have a price below or equal to p have won the auction. If the market clears at price
p ∈ [pst , pst+1) then the supplier has to deliver qst . In the example of Figure 5.2 this is
shown for a market clearing price of p = 37; the corresponding quantity (0.4) can
be easily read from the step function. Note that the market clearing price is ‘only’

the settlement price, from which all quantities for the di�erent market participants

can be deduced. �is price is not necessarily equal to the price that each participant

receives for its settled quantity. In a uniform pricing mechanism the settlement price
equals the participants price, whereas in a pricing as bidmechanism the participants
price could be lower than the settlement price.

5.2.2 price taking

We assume that the operator of the Virtual Power Plant is a price taker in the sense

that its in�uence on the (oligopolistic) market is negligible and that the constructed

bids do not a�ect the market clearing price. �is assumption is reasonable for small
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sized VPPs; e.g. a cooperation consisting of 100000 microCHPs reaches a maximal

market share during winter of about 1%. For such a price taker the market clearing

price is considered as given. �e supplier has no in�uence on this price, so the

density function f (p) remains unchanged by the actions of the supplier.

5.2.3 quantity outcome of the auction

�e operator of the VPP wants to settle a quantity that is close to its desired quantity.

In the following we introduce a quantity interval [Q ,Qmax] that resembles this
closeness. For sake of simplicity, we may refer to Q as the desired quantity, although
this value actually might be a little bit below the desired quantity. To this end we

de�ne two requirements:

• any positive outcome of the auction (winning the auction) should have a

quantity that is larger than Q and close to Q;

• the probability of having a positive outcome should be larger than a given

value β.

Let the interval [Q ,Qmax] de�ne the domain from which the bid quantities may
be chosen. To obtain the closeness requirement of quantities that result from the

auction, we demand that Qmax is maximally 10% larger than Q: QmaxQ ≤ 1.1. We use

a limited amount of Tmax bids, which implies that Qmax − Q ≥ 0.1(Tmax − 1). We
choose Qmax = Q + 0.1(Tmax − 1) such that we have the smallest possible domain.
Later on we will use the following inequality for the minimum quantity of Q:

Qmax
Q

≤ 1.1

⇒
0.1(Tmax − 1)

Q
=
Qmax − Q
Q

=
Qmax
Q

− 1 ≤ 0.1

⇒Q ≥
0.1(Tmax − 1)

0.1
= Tmax − 1. (5.3)

In case we lose the auction we are of course not close to the desired quantity

Q. To prevent the occurrence of this event we propose a probability β, which
value represents the chance of winning the auction. �e probability of winning the

auction should be larger than this value. �is is de�ned by the following equation:

∫ pmaxps
1

f (p)dp ≥ β. (5.4)

�is means that we have an additional restriction for the price of the �rst (and

lowest) bid.

5.2.4 market clearing price distribution

We focus on taking part in the day ahead electricity market of �e Netherlands.

For this APX day ahead market, we collected data from November 22, 2006 until
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November 9, 2010. �e average price is 48.87e/MWh for the complete time horizon,
with a minimum daily average of 14.83e/MWh and a maximum of 277.41e/MWh.
In general no real trend in the development of the electricity prices can be found,

other than that prices stabilize a�er a temporary peak in 2008. For short term time

periods the prices remain relatively stable and are highly correlated to the prices of

previous days. �is led to the assumption that the prices on a short term history

might follow a normal distribution with mean µs and standard deviation σs based
on the prices of the previous days. Upto a history of 35 days, this assumption has

been tested on the collected data, whereby our assumption was validated.

To show this behaviour in a graphical way, Figure 5.3 shows the acceptance rate

of single bids whose hourly price is based on the hourly price of the previous day.

�is acceptance rate is determined by comparing the market clearing price for each

hour s with the market clearing price of the previous day for the same hour, and
using the latter price, multiplied with a percentage, as a bid for the current day. �e

�gure shows the percentage of accepted bids to the percentage of the previous price,

for all 24 hours. �is �gure resembles a cumulative normal distribution.

0
50

100
150

200 0

10

20

0

50

100

percentage of previous price (%)

time (h)

a
c
c
e
p
ta
n
c
e
ra
te
(%
)

Figure 5.3: �e acceptance rate of single bids whose hourly price is based on the

hourly price of the previous day

5.3 Bidding strategies for uniform pricing

We are interested in the expected pro�t that the supplier canmake and in guarantees

on the resulting quantity that has to be supplied. �ese guarantees on the resulting

quantity are mentioned in the previous subsection, which means that we can now

focus on the price forming. In most markets the price that each market participant

receives equals the market clearing price. An o�en used mechanism for which this
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holds is called uniform pricing. In uniform pricing all participants receive the same

price for their settled quantities; this price is the market clearing price.

In the literature on uniform pricing mechanisms the construction of a set of

bids is related to the usual costs associated with production. Constructed bids equal

the marginal cost function in the situation of perfect competition. [98] shows that

the bid construction still follows the marginal cost function when the problem is

restricted to a limited numbers of bids. We also deal with a situation in which the

number of di�erent bids is limited, due to our closeness requirement and possibly

due to rules that are determined by the organizer of the auction. In our situation

however, we do not consider cost functions, but we further restrict the form of the

bids by focusing on bounded quantities qst ∈ [Q ,Q + 0.1(Tmax − 1)].
�e lack of cost functions has its implications on the bid construction under the

assumption of uniform pricing. �e bid construction problem has the following

form:

max
T−1
∑
t=1 ∫

pst+1

pst
pqst f (p)dp + ∫ pmaxpsT

pqsT f (p)dp (5.5)

s.t. ∫ pmaxps
1

f (p)dp ≥ β (5.6)

T ∈ {1, . . . , Tmax} (5.7)

qst+1 ≥ qst + 0.1 (5.8)

pst+1 > pst (5.9)

Q ≤ qst ≤ Q + 0.1(Tmax − 1) (5.10)

− pmax ≤ pst ≤ pmax . (5.11)

Equation (5.5) expresses that we want to maximize the expected pro�t by integrating

the function pqst over the intervals [pst , pst+1) for all bids (pst , qst), t = 1, . . . , T − 1
and the function pqsT over the interval [psT , pmax] for the last bid (psT , qsT). �e
price winning constraint is given by (5.6) and we restrict to using at most Tmax bids
(5.7). Equations (5.8) and (5.9) force that bids are strictly increasing and (5.10) and

(5.11) that the limitations on quantity and price are followed.

�e optimal auction strategy for uniform pricing is based on the fact that, for

the integral ∫ p
s
t+1

pst
pqst f (p)dp, the price p that the participant receives is integrated

over the corresponding interval, whereas the quantity qst is �xed. �is leads to the
observation that, for 0 ≤ a < b < c, k < l and f (p) a positive function, we have:

∫ ba pk f (p)dp + ∫
c

b
pl f (p)dp = k ∫ ba p f (p)dp + l ∫

c

b
p f (p)dp

<l ∫ ba p f (p)dp + l ∫
c

b
p f (p)dp = ∫ ca pl f (p)dp. (5.12)
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Similarly, for a < b < c ≤ 0, k < l and f (p) a positive function we observe:

∫ ba pk f (p)dp + ∫
c

b
pl f (p)dp = k ∫ ba p f (p)dp + l ∫

c

b
p f (p)dp

<k ∫ ba p f (p)dp + k ∫
c

b
p f (p)dp = ∫ ca pk f (p)dp. (5.13)

Equation (5.12) shows that it is not bene�cial to have more than one bid with a

positive price; (5.13) shows that it is not bene�cial to have more than one bid with a

negative price.

�e optimal set of bids consists of one bid for positive prices, where the maxi-

mum amount Qmax is o�ered, and possibly a second bid in case of negative prices,
where the minimum amount Q is o�ered. �e existence of one or two bids de-
pends on the value of ps1(β), where ps1(β) results from an equality for the auction
winning constraint (5.6): ∫ pmaxps

1
(β) f (p)dp = β. If ps1(β) ≥ 0, the optimal bid is

(p∗ , q∗) = (0,Qmax). By applying this construction all positive contributions to
the pro�t are maximally accounted for. If ps1(β) < 0, negative contributions (the
in�uence of negative prices) should be minimized. In this case the optimal set of

bids consists of two bids (p∗1 , q∗1 ) = (ps1(β),Q) and (p∗2 , q∗2 ) = (0,Qmax).

5.4 Bidding strategies for pricing as bid

In the setting of uniform pricing there is no incentive for the operator of a VPP to

submit a bid with a positive price due to (5.12). �is situation changes when the

auction mechanism would be pricing as bid. In this mechanism the VPP receives

the price that it has bidden for the quantity that is settled. �is changes (5.5) into:

max
T−1
∑
t=1 ∫

pst+1

pst
pstqst f (p)dp + ∫ pmaxpsT

psTqsT f (p)dp (5.14)

Figure 5.4 presents the di�erence between the two auctionmechanisms (uniform

pricing and pricing as bid) in a graphical way. In this simple example we concentrate

on a market clearing price with mean 50 and standard deviation 10. Figures 5.4a,

5.4b, 5.4c and 5.4d plot the corresponding functions p f (p) and pt f (p) that are
integrated on the domain [0, 100], corresponding to the equations (5.5) and (5.14)

respectively. Figures 5.4a, 5.4b, 5.4c and 5.4d show the e�ect of strategically bidding

in the pricing as bid case. For di�erent number of bids, that are uniformly distributed

over the price domain (in case of 2 bids, we choose for p1 = 0 and p2 = 50, in case of
4 bids, we choose for p1 = 0, p2 = 25, p3 = 50 and p4 = 75, etcetera), we see the ‘loss’
in pro�t (the gray areas) diminish as the number of bids grows. In the following we

derive lower bounds for the expected revenue for bid sets with di�erent sizes Tmax.
Namely, we want to use as few di�erent bids as possible, since they determine the

variability in the quantity outcome. We see that in such cases, the price setting does

not follow a uniform distribution, as we used in this example. First we state some

properties of the market clearing price distribution.
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Figure 5.4: Graphical representations of the di�erence between uniform pricing

and pricing as bid

5.4.1 natural behaviour of the market clearing price distribution

When we observe the short term history of the market clearing prices of individual

hours, the clearing prices can be approximated by a normal distribution with mean

µs and standard deviation σs . Negative prices are allowed on the day ahead market,
but in practice they hardly occur (in our data it never occurred that prices became

negative). However, the bid construction that we propose also deals with negative

prices.

In the process of determining lower bounds for the expected revenue (pro�t)

we have to evaluate the integral of the probability density function of a normal

distribution ∫ 1√
2πσ 2

e−
(p−µ)2
2σ2 dp, which cannot be evaluated by the use of elementary

functions. For the cumulative distribution function Φ(x) of the standard normal
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distributionN(0, 1) we use the approximation of [27]:

Φ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0.5 + 0.5

√

1 −
7e−

x2
2 +16e−x2(2−√2)+(7+ π

4
x2)e−x2

30
x ≥ 0

0.5 − 0.5

√

1 −
7e−

x2
2 +16e−x2(2−√2)+(7+ π

4
x2)e−x2

30
x < 0.

(5.15)

We want to have a probability of winning the auction of β = 0.99. Note that for

the approximation given in (5.15) we get Φ(−2.33) ≤ 0.01, which indicates that

for a price ps1 ≤ µs − 2.33σs the auction winning equation is satis�ed. From this
description of ps1 we deduce that for:

µs
σs

≥ 2.33, (5.16)

a positive lowest bid price is possible, if we ask for a probability of winning of 99%.

�e relationship between µs and σs plays an important rule in the determination
of the lower bound in the following section. �e value 2.33 in (5.16) is used as an

examplatory value in the proof and the discussion. Note that other values are also

evaluated and negative prices are also discussed.

5.4.2 lower bounds on optimizing for pricing as bid

�e goal of this subsection is to give an indication how good we can bid on the

electricity market for the auction mechanism pricing as bid. �e objective of acting

on the day ahead market is to maximize the expected revenue. To achieve lower

bounds on the expected revenue we use a special construction for the prices in the

di�erent bids that together form the o�er. All prices can be written in the form

pst ∶= µs + atσs . By using this construction, the probability that a certain bid is
accepted is independent from the choice for µs and σs and remains thus constant,
since Φ(

pst−µs
σs ) = Φ(

µs+a t σs−µs
σs ) = Φ(at). When we restrict the speci�c choices for

the at values, we can consider corresponding lower bounds.
�e lower bound depends on a minimum value for the quotient

µs
σs and on the

maximum amount of bids Tmax that is allowed in the bid construction. �e resulting
lower bound can be interpreted as the fraction between the expected revenue of

the constructed bid and the revenue when the maximum amount Qmax is sold for
the average price µs . �is revenue Qmaxµs is an approximation of the optimum
expected pro�t for uniform pricing.

In the following we consider a very speci�c choice for a bidding strategy and

prove a resulting lower bound for this case. We choose
µs
σs ≥ 2.33, Tmax = 4, a1 =

−2.33, a2 = −1.20, a3 = −0.39 and a4 = 0.45. For this we can prove the following
result. �e proof indicates how also for other cases a lower bound can be calculated.

�eorem 2 For a mean to standard deviation ratio µsσs ≥ 2.33 and a maximum
number of bids in an o�er Tmax = 4 the quadruple o�er {(µs − 2.33σs ,Qmax −
0.3), (µs − 1.20σs ,Qmax −0.2), (µs −0.39σs ,Qmax −0.1), (µs +0.45σs ,Qmax)} is at
least 0.740 times the optimal expected pro�t of uniform pricing Qmaxµs .
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Proof We use two relations in this proof. �e �rst one follows from µs
σs ≥ 2.33:

−
µs
2.33

≤ −σs .

�e second one results from (5.3) using Tmax = 4:

Q ≥ Tmax − 1 = 3
⇒Qmax = Q + 0.1(Tmax − 1) = Q + 0.3 ≥ 3.3

⇒−
Qmax
3.3

≤ −1.

�e expected revenue of uniform pricing is Qmaxµs . �e lower bound on the
expected revenue of pricing as bid is a direct result from applying the above two

relations to the bids (µs − 2.33σs ,Qmax − 0.3), (µs − 1.20σs ,Qmax − 0.2), (µs −
0.39σs ,Qmax − 0.1) and (µs + 0.45σs ,Qmax):

∫ µs−1.20σs

µs−2.33σs
(µs − 2.33σs)(Qmax − 0.3) f (p)dp+

∫ µs−0.39σs

µs−1.20σs
(µs − 1.20σs)(Qmax − 0.2) f (p)dp+

∫ µs+0.45σsµs−0.39σs
(µs − 0.39σs)(Qmax − 0.1) f (p)dp+

∫ pmaxµs+0.45σs
(µs + 0.45σs)Qmax f (p)dp

=(µs − 2.33σs)(Qmax − 0.3)(Φ(−1.20) −Φ(−2.33))+

(µs − 1.20σs)(Qmax − 0.2)(Φ(−0.39) −Φ(−1.20))+

(µs − 0.39σs)(Qmax − 0.1)(Φ(0.45) −Φ(−0.39))+

(µs + 0.45σs)Qmax(1 −Φ(0.45))

=Qmaxµs(1 −Φ(−2.33)) + Qmaxσs(−2.33(Φ(−1.20) −Φ(−2.33))−

1.20(Φ(−0.39) −Φ(−1.20)) − 0.39(Φ(0.45) −Φ(−0.39))+

0.45(1 −Φ(0.45))) + µs(−0.3(Φ(−1.20) −Φ(−2.33))−

0.2(Φ(−0.39) −Φ(−1.20)) − 0.1(Φ(0.45) −Φ(−0.39)))+

σs(−0.3 ⋅ −2.33(Φ(−1.20) −Φ(−2.33)) − 0.2 ⋅ −1.20(Φ(−0.39)−

Φ(−1.20)) − 0.1 ⋅ −0.39(Φ(0.45) −Φ(−0.39)))

=0.990Qmaxµs − 0.505Qmaxσs − 0.111µs + 0.142σs

≥0.990Qmaxµs −
0.505

2.33
Qmaxµs − 0.111µs + 0.142σs

≥0.773Qmaxµs − 0.111µs ≥ 0.773Qmaxµs −
0.111

3.3
Qmaxµs

=0.740Qmaxµs .

∎
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Tmax = 1 Tmax = 2 Tmax = 3 Tmax = 4 Tmax = 5
T = 1 a1 -2.33 -2.33 -2.33 -2.33 -2.33

LB 0 0 0 0 0

T = 2 a1 - -2.33 -2.33 -2.33 -2.33

a2 - -0.53 -0.49 -0.48 -0.47

LB - 0.516 0.530 0.534 0.536

T = 3 a1 - - -2.33 -2.33 -2.33

a2 - - -0.96 -0.94 -0.93

a3 - - 0.10 0.13 0.14

LB - - 0.667 0.677 0.683

T = 4 a1 - - - -2.33 -2.33

a2 - - - -1.20 -1.18

a3 - - - -0.39 -0.36

a4 - - - 0.45 0.48

LB - - - 0.740 0.748

T = 5 a1 - - - - -2.33

a2 - - - - -1.36

a3 - - - - -0.68

a4 - - - - -0.05

a5 - - - - 0.68

LB - - - - 0.783

Table 5.1: Lower bounds for di�erent values of Tmax and di�erent numbers of bids

�e above proof uses speci�c values for at . �ese values are not randomly cho-
sen. Instead, the values for at are found by an extensive search over the parameters
at , such that a1 < a2 < a2 < a4 and at ∈ {−2.43,−2.42, . . . , 2.32, 2.33}, and the

lower bound coe�cient is maximized. �is set is chosen, since we did not expect

that the coe�cients would be such that negative prices would occur in the bidding

strategy. However, we allowed a small possibility of negative prices, but, as we will

see, these negative prices did not occur. Note that we also allow values for which

(5.6) gives a strict inequality.

In a similar way as above we have derived also lower bounds for a few other

choices of Tmax and T . �e corresponding best results are given in Table 5.1. �e
table shows the results assuming

µs
σs ≥ 2.33.

�e lowest value for a1 equals −2.33 in all cases. �is is logical, since negative
prices are unnecessary for this special case. We can observe from this table that the

lower bound belonging to a �xed number of T bids increases when Tmax increases.
�is is due to the increased �exibility for the quantities qst in the interval [Q ,Qmax].
Although this is an interesting result, in each case it is worth to use the full quantity

domain, i.e. using T = Tmax di�erent bids. In general, the lower bound increases
with increasing Tmax. Already with 5 bids we are close to 80% of the expected value.
However, the accompanying quantity domain increases too. �erefore a good trade-

o� between lower bound and quantity domain is needed when we construct an

actual bid set.

5.4.3 computational results

�e results of Table 5.1 are valid for all fractions
µs
σs ≥ γ with γ = 2.33. In this section

we evaluate the behaviour of the lower bound when γ varies. A small value of γ
allows for a relative high standard deviation and a large value of γ allows for relative
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small standard deviations. We expect that we �nd better bidding strategies when γ
increases. For this evaluation we use T = Tmax for the �ve di�erent values of Tmax,
such that the quantity domain is completely used.

Figure 5.5 shows the bid construction (the assignment of values for at) and the
lower bound, for 0.01 ≤ γ ≤ 50 with steps of 0.01. �e bid coe�cients are denoted

on the le� y-axis and the lower bound is plotted on the right y-axis.
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(b) T = 4

Figure 5.5: �e behaviour of at for di�erent values of γ

For Tmax = 5, Figure 5.5a shows that for γ ≥ 5.13 it is bene�cial to use a price



136

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

0 10 20 30 40 50

−5

−4

−3

−2

−1

0

1

γ

b
id
c
o
e
�
c
ie
n
ts

a1 a2 a3 lower bound

0

0.2

0.4

0.6

0.8

1

lo
w
e
r
b
o
u
n
d

(c) T = 3
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(d) T = 2

Figure 5.5: �e behaviour of at for di�erent values of γ (continued)

ps1 < µs − 2.33σs . �e point γ = 5.13 is called the switching point, since it means that

from this point on the price winning equation is no longer of in�uence for the price

setting in the bids. All bid prices coe�cients at are non-increasing functions on
γ. However, this does not necessarily mean that the accompanying prices are non-
increasing, since the mean and standard deviation of the price can have di�erent

values. For Tmax = 4, a similar plot is given in Figure 5.5b. �e switching point for
as1 now is on γ = 5.99. �is point is 7.60 for Tmax = 3, 11.48 for Tmax = 2 and 40.22
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(e) T = 1

Figure 5.5: �e behaviour of at for di�erent values of γ (continued)

for Tmax = 1. In all cases, the corresponding bid prices are never negative for values
of γ that are larger than or equal to the switching points. Negative prices may only
occur due to the price winning equation, which forces the behaviour of at for all T
bids before the switching point. Note that this behaviour is also visible for ast , t > 1.

�e lower bounds for the di�erent values of γ and Tmax are combined in Figure
5.6. Figure 5.6a shows a surface plot of the lower bound. A contour plot of this �gure

is given in Figure 5.6b. �e contour lines are plotted with steps of 0.05. Especially

for small values of γ it is bene�cial to choose large values for Tmax.
In Table 5.2 the above bid construction is applied to the data of the APX day

ahead market. For the market clearing price prediction we assume a normal distri-

bution, where µs and σs are based on the values of a number of days in the short
term history.

In the top of the table the average, maximum and minimum fractions
µs
σs are

given for varying history lengths of 7, 14, 21, 28 and 35 days. �is average is decreas-

ing with increasing history length, showing that the variation is larger for larger

time periods. �e average and minimum
µs
σs fall in the steep part of Figure 5.6,

which shows that it is extremely important to choose a bid construction that follows

from a value of γ that is close to µsσs .

Based on the found fraction
µs
σs for the market clearing price prediction, bidding

strategies are developed for each hour. In the bid strategies the highest value of

γ is chosen, such that γ ≤
µs
σs . For the di�erent history lengths and varying Tmax,

the results of the auction mechanism pricing as bid are given in the table. �e

average price gives the average received price. �is price is compared to the average

market clearing price, which results in a certain percentage of the market price
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Figure 5.6: �e lower bound for di�erent values of γ and Tmax
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history (# days)

7 14 21 28 35

average
µs
σs

7.01 6.10 5.68 5.42 5.22

max
µs
σs

124.64 63.24 38.64 32.26 24.39

min
µs
σs

0.47 0.41 0.38 0.39 0.39

average price 43.02 42.81 42.65 42.60 42.48

T = 5 % of market price 88.03 87.58 87.27 87.16 86.91

average Q excess 0.27 0.27 0.26 0.26 0.26

average price 41.90 41.62 41.48 41.37 41.18

T = 4 % of market price 85.72 85.16 84.87 84.65 84.26

average Q excess 0.20 0.20 0.20 0.20 0.20

average price 40.10 39.52 39.22 39.00 38.73

T = 3 % of market price 82.05 80.86 80.25 79.79 79.24

average Q excess 0.14 0.14 0.14 0.14 0.14

average price 36.03 35.53 35.17 34.92 34.57

T = 2 % of market price 73.72 72.69 71.96 71.45 70.73

average Q excess 0.07 0.07 0.07 0.07 0.07

average price 22.33 20.81 19.64 18.78 18.03

T = 1 % of market price 45.68 42.59 40.18 38.43 36.89

average Q excess 0.00 0.00 0.00 0.00 0.00

Table 5.2: �e di�erent bid strategies applied to the data of the APX market

that is reached. �e average excess denotes the average amount by which the

quantity exceeds the value of Q. �e average excess increases almost linearly with
the number of bids T . �is value can be used to �t the domain [Q ,Qmax] to the
desired production of the VPP in a practical siuation. �e average price increases

sublinearly with T . In Figure 5.7 the percentage of the average price compared to
the market clearing price is depicted for an extended set of history lengths. �is
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Figure 5.7: Evaluation of constructed bids for di�erent history lengths
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�gure shows that a history of 7 or 8 days gives the best trade o� between prediction

accuracy and bid construction. Note that the average price is not completely equal to

the average revenue, since the quantity for which the market is cleared is not given.

However, we may assume that the behaviour is comparable, since the variation in

quantity is limited.

5.5 Conclusion

�is chapter shows methods to construct bids for two auction mechanisms on the

day ahead electricitymarket. �esemethods are aimed to be used by aVirtual Power

Plant as we describe it in Section 2.2.2. In comparison with existing approaches, our

bid construction has the special form of having limited �exibility in the variation

of the quantity-to-o�er combined with the requirement of a very high minimum

probability of winning the auction; bids are constructed in the absence of a cost

function for the VPP.

For the auction mechanism uniform pricing, the bid construction is given by a

unique bid for positive market prices and (possibly) an additional bid for negative

prices, in case the probability of winning the auction cannot be satis�ed with the

�rst bid.

For the auction mechanism pricing as bid, the bid construction is given by

successive bids (pt , qt), for which the quantity qt increases with the minimum
required di�erence of 0.1 MWh and the price pt is based on the predicted values
for the market clearing price µ (mean price), σ (standard deviation of the price)
and a coe�cient at , such that pt = µ + atσ . �e values of the di�erent coe�cients
at are optimized for a given range of the fraction µ

σ . Application of this form of bid

construction to real world data shows that already 88% of the market clearing price

can be reached as average settlement price, when at most 5 di�erent bids are used.



CHAPTER6
The general energy planning

problem

Abstract – �is chapter treats the general energy planning problem as an
extension of the Unit Commitment Problem. We add distributed generation, dis-
tributed storage and demand side management possibilities to this problem, thereby
shi�ing the focus of this optimization problem towards the decentralization within
the Smart Grid. �e general energy planning problem di�ers from the UCP in size
and in objective. We treat signi�cantly more appliances and use a combination
of objectives to include di�erent types of generators and appliances. �e general
energy planning problem is solved using a hierarchical structure, in which the dif-
ferent elements are solved by using sub problems in levels. �e general framework
consists of creating patterns for single entities/appliances, combining patterns for
such appliances on higher levels into so-called aggregated patterns, and using these
aggregated patterns to solve a global planning problem. Two di�erent case studies
show the applicability of the method.

In Chapter 3 the microCHP planning problem has been introduced and treated.

�is problem gives a good example of the type of planning problems that arise in

the �eld of distributed energy generation. It shows that for the combination of

hard and weak constraints feasibility plays an important role in large scale, small

sized generation: the planning of the operation of individual appliances cannot be

neglected by aggregating groups of generators and only making a planning on this

group level. A planning is necessary on the individual appliance level.

In the situation before the emergence of distributed energy generation, genera-

tors - even small sized ones (where small sized still means signi�cantly larger than

the kW level) - could be regarded as standalone entities in the portfolio of an energy

Parts of this chapter have been published in [MB:10] .

141



142

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

supplier. Energy management then consisted of the problem of �nding the optimal

combination of the assignment of the available entities in the portfolio; i.e. solving

the traditional Unit Commitment Problem (UCP). �e large scale introduction of

distributed energy generation, storage and load management asks for an extension

to this Unit Commitment Problem. �is extended problem is formulated as the

general energy planning problem in this chapter. Due to the large di�erences in

production capacity and the enormous amount of appliances (remind the practical

intractability of the microCHP planning problem for instances with only a small

amount of appliances) it seems unreasonable to attempt to solve this general energy

planning problem to optimality when we treat all appliances simultaneously. �ere-

fore we propose a leveled planning method, that plans the operation of generators,

storage possibilities and consuming appliances in a hierarchical structure based on

their location/size.

In general the technological developments in distributed generation, storage

and demand side load management introduce more and more controllable entities

that can be operated in di�erent ways for given circumstances, which makes them

suitable for use in a planning process. For instance, a microCHP in combination

with a heat bu�er is a controllable appliance, whereas a TV, although being con-

trolled by the user, is an example of a non-controllable appliance in the context

of the planning problem. �e combination of microCHP and heat bu�er allows

for various operating patterns to supply a given heat demand for the time horizon

of one day. A TV has exactly one completely determined electricity consumption

pattern for a given user behaviour for the time horizon. �is leaves no options for

a planner, unless the user behaviour can be adapted, which is a situation that we

do not desire. �erefore, in the general energy planning problem we focus on con-

trollable appliances. �e controllable appliances have a certain degree of freedom,

which determines the �exibility with which these appliances can be used in the

planning process. However, most of the considered appliances are less �exible than

the generators in the UCP, which emphasizes the feasibility aspect of this extended

problem: having only limited �exibility, global bounds on the total production need

to be satis�ed.

In this chapter we treat the combinatorial challenge of merging di�erent dis-

tributed technologies in the energy supply chain with the already available elements

in the existing infrastructure. We refer to this optimization problem as the gen-

eral energy planning problem. In Section 6.1 we discuss the di�erent application

domains of the changing energy supply chain that each play an important role in

the general energy planning problem. �en the problem is formulated in Section

6.2. A solution method that makes use of the available hierarchical structure in the

energy supply chain is presented in Section 6.3. Section 6.4 shows a detailed study

of examplatory case studies. Finally, conclusions are drawn in Section 6.5.
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6.1 Application domain

In Chapter 1 various elements of the energy sector have been described that illustrate

the partial decentralization of the energy supply chain. In the modelling process of

the general energy planning problem we focus on the controllable decentralized

elements of distributed production, distributed storage and demand side load man-

agement. We integrate these three types of elements in the existing framework for

the conventional elements, which is controlled by an energy distribution manage-

ment system that is based on the Unit Commitment Problem. So, the general energy

planning problem is merely an extension of the UCP. Other elements described

in Chapter 1 (e.g. photovoltaics (PV), windmills or the distribution and transmis-

sion grid itself) are not part of the central focus of this chapter. Solar panels and

windmills for example are non-controllable in the context of the planning process,

while the distribution and transmission grid is considered as a given infrastructure

for the general energy planning problem. Although they are not part of the main

design goal of the method which solves this problem, each of these elements may

in�uence the objectives of the problem. In this way feedback may be given about

design aspects of the electricity infrastructure, answering the question whether

or not the capacity of the distribution and transmission grid su�ces, or feedback

about the allowable penetration rate of non-controllable electricity generation for a

given infrastructure: how much solar panels or windmills can we allow, while still

guaranteeing a reliable electricity supply?

�e general energy planning problem combines di�erent types of energy: heat,

gas and electricity are examples of energy types that we have already seen in the

microCHP planning problem. However, the driving factor of the objective is on

electricity and its associated costs or revenues.

In the following subsections we describe application domains to which the

basic Unit Commitment Problem may be extended. We show the �exibility that

exists in each of the three types of decentralized elements. �is �exibility has

similarities with the �exibility in the microCHP planning problem; namely, the

electrical outcome of the operation of local electricity consuming or producing

appliances underlies a primal use of the corresponding appliances (e.g. the heat led

operation of microCHPs). A microCHP is heat demand driven as is a heat pump,

and a fridge or a freezer focuses primarily on controlling the temperature of the

appliance. �is shows that many decentralized elements have a twodimensional

aspect. As a consequence theymay have similar feasibility problemswhen combined

in large groups of equivalent appliances as in the microCHP planning problem.

6.1.1 distributed generation

Possibilities for distributed energy generation on a household scale (i.e. microgen-

eration) are abundant nowadays. We distinct between two types of appliances for

microgeneration. First, microgenerators exist that are mainly installed to supply the

heat demand of the household. �ere are di�erent types of this kind of generation, of

which we treat microCHPs and heat pumps. Other types of heat demand driven mi-
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crogeneration (e.g. solar boilers) are not considered, since they are non-controllable

for a planner. �e second type of appliances consists of microgenerators that have

the primary goal to produce electricity. On a household level, these generators (e.g.

PV panels, small windmills) completely depend on renewable energy sources and

are thus non-controllable in the planning process. �erefore, we concentrate on

microCHPs and heat pumps, from which the microCHP has already been treated

extensively in Chapter 3.

A heat pump [75] extracts heat from the immediate surrounding of a building.

�e heat is extracted from outside air or from a certain depth within the soil and

transported through the air or through water. Electricity is used to provide the

mechanical work that is needed to enforce the available heat of a certain temperature

at the input of the appliance to achieve a higher temperature at the output. Part of

the electricity that is needed to perform the heat transfer results in an additional

heat generation that is used to increase the Coe�cient of Performance (COP) of the
heat pump. �is COP is de�ned as the fraction between heat output and electricity
input. �e heat pump can also be operated in a reverse mode, meaning that it can

be used to cool a building instead of heating it. In this case, the heat pump operates

similar as a fridge/freezer.

When we model a heat pump, di�erent aspects are of importance. �e heat

input for the heat pump is assumed to be unbounded (the soil or the outside air are

represented by an in�nite bu�er). Note that in some countries on a long term (one or

more years) the heat exchange with the surrounding environment is forced to be 0;

i.e. energy neutrality is required, which forces the heat pump to use as much heat to

provide heat demand in winter as it returns by cooling in the summer. For the short

term operation for a single day we assume that this restriction has no in�uence on

the possible operation of the heat pump. We model the electricity consumption of a

heat pump by the variable e ij and the corresponding heat generation by the variable
g ij for heat pump i and time interval j. Note that positive values for e ij correspond
to electricity consumption, in contrast with the used variables in the microCHP

case. A heat pump can operate at multiple modulation modes, which correspond to

di�erent levels of electricity consumption that result in di�erences in the heat output.

�ese modulation modes are chosen from 0 kW (the heat pump is o�) to 2 kW

with steps of 0.4 kW. Using COP = 4 [11] this leads to a maximum heat generation
of 8 kW, which corresponds to the amount a microCHP produces when it runs at

maximum production. Converted to time intervals, E imax represents the maximum
possible electricity consumption (in kWh) in a time interval. Furthermore, let m ij
be an integer variable which expresses the chosen modulation level of heat pump i
in time interval j:

m ij ∈ {0, 1, . . . , 5}. (6.1)

�e electricity consumption then can be expressed by:

e ij =
m ij
5
E imax . (6.2)
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�e generated heat depends linearly on this consumed electricity:

g ij = COP × e ij ∀i , j. (6.3)

�e choice for COP = 4 coincides with usual Coe�cients of Performance for heat
pumps [11]. We require the heat pump to keep its chosen modulation level m ij
constant for the duration of half an hour to prevent alternating behaviour on the

short term. For the heat pump we assume negligible startup and shutdown times,

which corresponds to the realtime behaviour of the heat pump. Furthermore, we

assume that the heat output of the heat pump is connected to a heat bu�er in a

similar way as the microCHP is. In this way, the heat bu�er o�ers a certain degree

of freedom to the operation of the heat pump that is equivalent to the �exibility of

a microCHP.�e natural restriction to stay within the bounds of the heat bu�er are

given by the following equations:

hl i1 = BL i ∀i (6.4)

hl ij = hl ij−1 + g ij−1 −H ij−1 − K i ∀i , j = 2, . . . ,NT + 1 (6.5)

0 ≤ hl ij ≤ BC i ∀i , j = 1, . . . ,NT + 1, (6.6)

where the heat bu�er is modelled similar as in the microCHP case, using a begin

level BL i , a capacity BC i , a heat loss K i , the heat demand H ij and the variable hl ij
that models the heat level at the start of time interval j.
Compared to the operation of microCHPs, we can model similar �exibility

by using the same heat bu�er sizes. However, due to the di�erent modulation

possibilities we obtain another degree of freedom in the operation. Of course the

combined operation of di�erent heat pumps is subject to cooperational constraints.

�ese requirements form a desired aggregated electricity demand pattern, which is

treated as part of the solution method for the general energy planning problem.

6.1.2 distributed storage

Regarding energy storage related to local households, heat and electricity bu�ers can

be distinguished. Heat bu�ers have already been treated in combination with the

use of distributed generation techniques. As electricity bu�ers we consider batteries

of a size equivalent to car batteries that become available with the introduction of

electrical cars [33].

From a user perspective an electrical car battery is intended to be charged, such

that the battery is full when the car is used for driving. Let the capacity of the battery

of car i be denoted by CC i . A typical value of the car battery is around 50 kWh
[33]. �e time period between the (planned) arrival and the planned departure

can be used to schedule the charging process for the car. �is time period can be

partitioned in an uninterrupted set of increasing time intervals {ta , . . . , td} which
is a subset of the complete set of time intervals {1, . . . ,NT} of the planning horizon
[0, T]. We use a binary parameter Aij to indicate the availability of the electric car
of household i in time interval j; if Aij = 1, the car is available for charging and if
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Aij = 0 the car is unavailable. LetMC i represent the maximum amount of electricity
in kWh that the car of household i can be charged in one time interval. �is value
MC i can result from the technical speci�cations of the car battery, but it is o�en
the case that this technical maximum is too large for direct application within a

house (the house would have to be equipped with a dedicated electric circuit to be

able to reach this maximum). If this is the case,MC i may be further limited by the
technical constraints of the house. �e decision variable c ij models the charging of
the electrical car. To ensure that the variables c ij are consistent with the availability
of the car, we use the following constraints:

0 ≤ c ij ≤ MC iAij ∀i ∈ I,∀ j ∈ J . (6.7)

�is way, charging is prevented in case that the car is unavailable (c ij is forced to be
0); all other charging possibilities are still open. �e battery level bl ij at the end of
interval j depends on an initial battery level BBL i at the arrival of the car and the
charging decisions c ij . Formally, this is expressed by:

bl ita−1 = BBL
i

(6.8)

bl ij = bl ij−1 + c ij ∀ j ∈ {ta , . . . , td}. (6.9)

We assume here that the goal is that the battery has to be fully charged at the

departure time:

bl itd = CC
i
. (6.10)

However, we alsomay de�ne less strict requirements on the battery level at departure,

which increases the �exibility of the planning.

Until now we have focused only on charging the car battery. However, as long

as the car is available at the house and if the time of departure allows for it, we also

may use the battery as an electricity supplier. In this (Vehicle to Grid [71, 76]) case

constraint (6.7) changes into:

−M̃C iAij ≤ c ij ≤ MC iAij , (6.11)

where themaximum amount that can be taken out of the battery in one time interval

is given by M̃C i . Note that discharging the car is denoted by negative values for c ij .
Furthermore, the capacity limits of the battery cannot be exceeded:

0 ≤ bl ij ≤ CC i ∀ j ∈ {ta , . . . , td}. (6.12)

Next to electrical cars, we also study batteries that are installed in houses. �e

model we use for these batteries origins from the model for the electrical cars ((6.7)-

(6.12)), by setting ta = 1 and td = NT . In this case we can omit equation (6.7) and
the availability parameter Aij . Besides this, we request the battery level at the end of
the day to di�er only slightly from the initial level at the start of the day, since we do
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not want to use these batteries to compensate for large indiscrepancies. �erefore,

(6.10) changes into:

0.8BBL i ≤ bl iNT ≤ 1.2BBL
i

∀i ∈ I, (6.13)

meaning that we want the total amount of energy in each battery i at the end of the
planning horizon to be almost equal to the total amount of energy in the battery at

the start of the planning horizon.

6.1.3 load management

�e examples upto now have shown that there is a lot of interaction between dis-

tributed generation, distributed storage and local consumption. �erefore, it is

not easy to draw a strict borderline between distributed generation, storage and

demand side load management. In this context, note that load management is not

only restricted to the appliances that we model below. Earlier described appliances,

such as electrical cars and heat pumps, can be placed under the umbrella of load

management too. However, the di�erences between pure consumption and con-

sumption with additional restrictions (the generation of heat or the possible supply

of electricity) make it worth to discuss them separately, as we did above.

As an example of controllable consuming appliances, we consider the operation

of a freezer. �e model of a freezer we present in the following is included in

the case study of Section 6.4. Usually, a freezer has a very repetitive structure of

cooling for a certain period, followed by a period where the freezer is switched o�.

�is repetitive process is a result of the requirement, that the temperature of the

freezer has to stay between a lower temperature Tmin and an upper temperature
Tmax during operation. In our model, we choose Tmin = −23○C and Tmax = −18○C.
For modelling the freezer, furthermore a parameter T iini t , representing the initial
temperatue of freezer i at the start of the planning horizon, is needed. �e operation
of the freezer can be expressed by binary decision variables d ij representing the
decision to cool (d ij = 1) or not to cool (d ij = 0):

d ij ∈ {0, 1}. (6.14)

To describe the cooling behaviour of the freezer, we specify the parameters for

basic time intervals of 6 minutes ( 1
10
th of an hour). During such an interval, we

assume that the temperature of the freezer increases with ∆To f f and decreases
with ∆Ton when d ij = 1. For an interval of 6 minutes we choose ∆To f f = 0.1○C
and ∆Ton = 0.6○C, which corresponds to a cooling capacity of 0.1

○C
minute

(and an

e�ective temperature drop of 0.5○C per basic time interval when the freezer is
on). �e operation of a freezer has to respect the temperature limits, which can be

expressed by:

Tmin ≤ T iini t + j∆To f f − ∆Ton
j

∑
k=1
d ik ≤ Tmax ∀i ∈ I∀ j ∈ J . (6.15)
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We assume that the electrical consumption f ij of a freezer depends directly on d ij :

f ij = FC id ij , (6.16)

where FC i is the electricity consumption during one basic time interval when the
freezer is on. We set FC i = 15 Wh in 6 minutes intervals, which corresponds to a
freezer with a power consumption of 150 W. We do not consider the in�uences of

user interaction on the temperature level of the freezer.

If we integrate freezers in a use case, the �exibility of a freezer is bounded,

similar to the operation ofmicroCHPs. However, the regular temperature increasing

behaviour and the corresponding regularity in the electricity consumption give a

plannermore possibilities to in�uence the decisions in later time intervals by shi�ing

the operation (e.g. �attening the demand of a group of freezers is a promising

objective).

6.2 The general energy planning problem

In the previous section the constraints on the individual operation of some ap-

pliances are given. �ese appliances may be combined with the elements of the

standard Unit Commitment Problem to form the framework of the general energy

planning problem. �is section sketches this framework of the general energy plan-

ning problem. Starting from the UCP we derive additional constraints to formulate

the general energy planning problem.

6.2.1 the unit commitment problem

�e basis of the classic UCP is a set of generators. Each of these generators can

produce electricity at di�erent production levels against certain costs. �e primal

objective of the set of generators is to supply given electricity demands d j , that are
speci�ed for time intervals j. Additionally, at each time interval a certain spinning
reserve capacity r j has to be available, which consists of (parts of) the currently
unused capacity of the already committed (running) generators. �e classic UCP

focuses on operational costs or on the revenue/pro�t of the system of generators.

For sake of simplicity, in the following we concentrate on the operational costs.

Operational costs are depending both on the binary commitment variables u ij
(specifying whether generator i is committed or not in time interval j) and on the
production level x ij (specifying the electricity production of generator i in time
interval j). In general the operational costs can be described by a function f (u, x),
where the variables u and x are indexed by time intervals and generators. Note that
startup costs are incorporated in this notation. �e decision problem for this set of

generators is described as follows:
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�eUnit Commitment Problem

INSTANCE: Given is a set of N generators with capacities

x i ,max , i = 1, . . . ,N , an electricity demand vector d = (d1 , . . . , dNT )
and a spinning reserve vector r = (r1 , . . . , rNT ). Furthermore, a bound
K and a function f i(u i , x i) is given, which speci�es for each vector pair
(u i , x i), whereby x i = (x i1 , . . . , x iNT ) represents the production level and
u i = (u i1 , . . . , u iNT ) represents the binary unit commitment of generator i,
the operational costs if generator i is operated in this way.
QUESTION: Is there a selection of unit commitment/operation level

pairs (u i , x i) for all generators i = 1, . . . ,N , such that
N
∑
n=1
x ij ≥ d j ,

N
∑
n=1
u ijx i ,max − x ij ≥ r j and

N
∑
n=1
f i(u i , x i) ≤ K?

�e description of unit commitment and production levels in this formal de�-

nition of the UCP is rather abstract. �ey become more clear when we sketch the

optimization problem associated to the UCP and its operational costs, in which the

objective of the UCP is to minimize f (u, x) = ∑Ni=1 f i(u i , x i). Also, some common
constraints that are used in most descriptions of the UCP are given below. �e total

production has to satisfy the demand in each time interval. Moreover, additional

spinning reserve capacity needs to be assigned to guarantee a certain amount of

�exibility in the case of a higher-than-predicted demand or in the case of a failure

of a committed generator. �e possible production of a generator is restricted by

lower and upper limits on the production level, as well as to ramp up and ramp

down rates s i ,up and s i ,down , which determine the speed with which generation can
be adjusted. Another common constraint is that a generator has to stay committed

for a certain number of consecutive time intervals, once it is chosen to generate

(minimum runtime). Similarly, minimum o imes are required once the decision is

made to switch the generator o�. �ese constraints are formulated in (6.17)-(6.25).

min f (u, x) (6.17)

s.t.∑
i
x ij ≥ d j ∀ j (6.18)

∑
i
(u ijx i ,max − x ij) ≥ r j ∀ j (6.19)

u ijx i ,min ≤ x ij ≤ u ijx i ,max ∀i , j (6.20)

s i ,down ≤ x ij − x ij−1 ≤ s i ,up ∀i , j (6.21)

u ij ≥ u ij−k − u
i
j−k−1 ∀i , j, k = 1, . . . , t i ,mr − 1 (6.22)

1 − u ij ≥ u ij−k−1 − u
i
j−k ∀i , j, k = 1, . . . , t i ,mo − 1 (6.23)



150

C
h
a
p
t
e
r

S
e
c
t
io
n

P
a
g
e

u ij ∈ {0, 1} ∀i , j (6.24)

x ij ∈ R+
∀i , j (6.25)

Equation (6.18) requires that the total production satis�es the total electricity de-

mand; equation (6.19) asks for a certain amount of spinning reserve r j , i.e. the
additional available generation capacity of already committed generators. �e sum

of the di�erence between the capacity x i ,max of committed generators and their
current electricity generation needs to be larger than r j in time interval j. �e
production boundaries of the generators x i ,min and x i ,max are modelled in equation
(6.20). �e ramp up and ramp down rates are taken into account in equation (6.21).

Equations (6.22) and (6.23) state that the generator has to stay up and running

(or stay switched o�) once a corresponding decision to switch it on (or o�) has

been made within the last t i ,mr (t i ,mo) time intervals. �e decisions to commit a
generator are binary decisions, where the production decisions are real numbers.

�e operational cost function f (u, x) includes two types of costs. First, it is
desired to have long runs for committed power plants. �erefore, the start of a

generator, which can be derived from the unit commitment variables u, is penalized
with a certain penalty cost. By using these penalty costs, the UCP tries to avoid

switching between the commitment of generators on a short term period. �e

second part of the cost function deals with the production levels of committed

generators. Depending on the behaviour of the fuel costs related to the production

level, quadratic cost functions are used to model the costs associated with these

di�erent production levels [102]. In our model these quadratic cost functions are

approximated with piecewise linear cost functions, to incorporate this notion of

quadratic costs in an ILP formulation.

Formulation (6.17)-(6.25) shows that the level of generation still has some �ex-

ibility, once the decision has been made to commit the corresponding generator.

�is �exibility can be used to prevent the additional use of currently uncommitted

generators. However, as also the spinning reserve constraint has to be taken into

account, the planning of the UCP cannot use this �exibility to its full extent.

6.2.2 the general energy planning problem

In the general energy planning problem we include the developing energy infras-

tructure next to normal power plants. Especially, we focus on �ve distinct elements:

microCHPs, heat pumps, electrical cars, batteries and freezers. In this section we

sketch the in�uence of these elements on the UCP. Attention is given to the com-

bined objective function of the general energy planning problem, as well as to the

possibilities to steer the demand.

Next to the power plants and their usual operation that is given by the normal

Unit Commitment Problem, we have decentralized appliances. We denote the set

of these appliances by M. �ese appliances are somehow collected in a Virtual
Unit (not to be confused with a Virtual Power Plant). On the one hand, this unit

changes the requested demand pro�le (we use variables zm for specifying the use
of appliances m ∈ M and a function h to describe how z in�uences the demand
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in the di�erent time intervals). On the other hand, it may be possible that some

of the production within the Virtual Unit is o�ered to an electricity market. To

cope with this option, we specify production by variables ym , which depend on
the unit commitment um and the actual use zm of a subset of appliances that are
able to generate electricity and to participate in acting on an electricity market. A

function g(p, y) that depends on themarket clearing prices p and the production of
(a part of) the Virtual Unit describes the pro�t that can bemade. Finally, constraints

specifying the correct use of the decentralized appliances have to be added.

�e formulation of the general energy planning problem is given by equations

(6.26)-(6.39), where the original UCP can be found in equations (6.27)-(6.32). Note

that this is a mere modelling description of the behaviour of the di�erent elements,

and not a formulation of a speci�c form (like e.g. an ILP formulation).

min f (u, x) − g(p, y) (6.26)

s.t.∑
i
x ij +∑

m
ymj ≥ d j +∑

m
h j(zm) ∀ j (6.27)

∑
i
(u ijx i ,max − x ij) ≥ r j ∀ j (6.28)

u ijx i ,min ≤ x ij ≤ u ijx i ,max ∀i , j (6.29)

s i ,down ≤ x ij − x ij−1 ≤ s i ,up ∀i , j (6.30)

u ij ≥ u ij−k − u
i
j−k−1 ∀i , j, k = 1, . . . , t i ,mr − 1 (6.31)

1 − u ij ≥ u ij−k−1 − u
i
j−k ∀i , j, k = 1, . . . , t i ,mo − 1 (6.32)

umj ≥ umj−k − u
m
j−k−1 ∀m, j, k = 1, . . . , tm ,mr − 1 (6.33)

1 − umj ≥ umj−k−1 − u
m
j−k ∀m, j, k = 1, . . . , tm ,mo − 1 (6.34)

um ∈ H ∀m (6.35)

ymj = l(um) ∀m, j (6.36)

zm ∈ S ∀m (6.37)

u ij , umj ∈ {0, 1} ∀i ,m, j (6.38)

x ij , ymj ∈ R+
∀i ,m, j (6.39)

We have a group of microCHPs that can operate as decentralized electricity

producers, representing the part of the Virtual Unit that can operate on an electricity

market. �e combined generation of this group partially satis�es the electricity

demand in the problem, but moreover this production can be o�ered to the day

ahead market. To express this possibility we add a function g(p, y) to the objec-
tive function, which represents the pro�t of the VPP of microCHPs based on the

predicted electricity prices p and the electricity generation y.
In this general energy planning problem model an important change is the

incorporation of demand side load management to adjust the distribution of the

demand. �is is formalized in equation (6.27) by the function h j(z), where zm
represents the tuple of controllable appliances in house m. We denote the space S
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in (6.37) to represent the feasible demand side management possibilities, which are

constrained by equations (6.1)-(6.16) of the previous section.

Furthermore, the local generation ymj of the microCHP is taken into account
in equation (6.27) too. �e local generators have the same type of dependency

constraints on runtime and o ime over time intervals (equations (6.33) and (6.34))

as the large generators (equations (6.31) and (6.32)). Next to these machine depen-

dency constraints the generators also have user dependencies, resulting e.g. from

the heat demand. Equation (6.35) uses the spaceH to denote the feasible commit-

ment options for the microCHPs. �e generator output is completely determined

by the commitment decisions, as in equation (6.36).

6.3 Solution method

�e planning problem is alreadyNP-complete in the strong sense if only a group of

microCHPs is considered. �is complexity follows from the two-dimensional aspect

of the problem (i.e. a strong dependency between generation in time intervals and

a strong dependency between households due to the aggregated generation in the

�eet). It is therefore practically intractable to solve the general energy planning

problem (of which the microCHP planning problem is only a part of the problem)

to optimality. In this section a heuristic method for the general energy planning

problem is presented that uses the natural division into di�erent production levels

to separate the decisions that have to be made for the power plants, the decisions

that have to be made for the local generators and the decisions to be made for

demand side load management.

In Chapter 2 an energy model of the smart grid is given using a division into dif-

ferent levels. �is division is based on the amount of energy the di�erent generators

produce and on the location. �is division forms the base for a leveled approach to

solve the general energy planning problem. In this section, this leveled approach for

solving the planning problem is given, introducing patterns as building blocks for

the method. First we elaborate on the hierarchical structure of the general energy

planning problem; then we show the cooperation between di�erent master and sub

problems that are solved in order to �nd a solution to the general energy planning

problem.

6.3.1 hierarchical structure

Since it is hard to combine the commitment of large and small types of generation

in one decision step, we divide the general energy planning problem in di�erent

smaller problems. An important aspect when dividing a problem in multiple parts,

is to incorporate the given objective within the di�erent sub problems in a proper

way. We propose a hierarchical structure that naturally allows the planner to obtain

information of sub problems on the smaller generation levels and to give feedback

to more local problems on how to improve their local solution with respect to the

global (original) problem. Figure 6.1 shows the proposed hierarchical division.

In the top level we have the large power plants and aggregated generation that
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level 1: large power plants

level 2: small power plants/villages

level 3: houses

level 4: appliances

Figure 6.1: �e hierarchical structure of the general energy planning problem

has equivalent capacity as a large power plant. �e second level consists of small

generators (e.g. biogas installations, small windmill parks) that produce signi�cantly

less than the large power plants, and the aggregated production/consumption of

villages/cities. �e third level is the house level, which operation is aggregated

on the higher village level by using the exchanging elements of the energy model.

On this house level single appliances are planned. In case only one controllable

appliance is available at the house, this appliance is considered as a complete house,

since it is the only controllable variable. In case of multiple controllable appliances

a fourth level is introduced, which is the lowest level in the hierarchy.

6.3.2 sub levels and sub problems

Each node in the hierarchy is considered as an entity in the solution method for

the general energy planning problem. �e original problem corresponding to the

example in Figure 6.1 is depicted in Figure 6.2, where black nodes correspond to the

elements for which a planning is needed and white nodes correspond to aggregation

of information. �e elements for which a planning is needed are the leaves in the

Figure 6.2: �e general energy planning problem
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hierarchical structure. �e optimal solution to the general energy planning prob-

lem consists of speci�c production/consumption patterns for each black element.

Intermediate nodes in the graph are unused in the original problem formulation,

but are used in the heuristic method as communicating and aggregating entities.

�e heuristic method is based on the notion of patterns for all considered

elements. Hereby, a pattern consists of a vector of the electricity balance for each

time interval, where a positive value corresponds to production and a negative

value to consumption. To achieve problems which are better tractable we divide

the problem in a master problem and various sub problems. A key property of

these divided problems is that in each problem only a part of the original problem

is optimized by creating (new) patterns for this part. �e heuristic uses at all times

only a small subset of the possible patterns whichmay exist for an element. Only this

subset of patterns is considered for the elements in the planning process, meaning

that we do a restricted search in the space of feasible patterns.

�emaster problem acts on the highest level of the considered problem instance.

Figure 6.3a shows the elements that are used in this master problem. �e black

nodes correspond to elements for which a pattern has to be found, based on the

original objective function of the general energy planning problem. Grey nodes

serve as input for the master problem, i.e. the corresponding elements have to

produce a set of patterns, which re�ect possible overall patterns of the subproblems

they are responsible for. �is set is not changed during the solving process for the

master problem in a given iteration and is thus a �xed input set during one iteration

of the method.

Based on the achieved solution to the master problem, information can be

derived that asks the lower (grey) elements to adjust their set of patterns. �is

information exchange is shown by the light grey nodes in Figures 6.3b-6.3f. In each

sub problem patterns are created for the black nodes, based on this information

from above, and possibly based on (limited) pattern sets from the grey nodes below.

Note that in this setting in each master or sub problem decisions have to be made

for only a limited amount of elements which are comparable in size. �e objective

for sub problems is to optimize the pattern that has to be created based on the

information from above. Although the original objective function is invisible in

the local sub problems, the local objectives are ultimately based on the original

objective function.

6.3.3 phases and iterations

�e previous subsection shows the possible interaction between di�erent sub prob-

lems and the main problem. In this subsection we sketch how these problems

are solved sequentially (or in parallel) in di�erent iterations. �e general energy

planning problem is solved in several phases, which describe subroutines in the

general energy planning problem, using several iterations, which represent the

amount of times that a certain subroutine is repeated.
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(a) Master problem (b) Sub problem for villages

(c) Sub problem for small generators (d) Sub problem for houses

(e) Sub problem for houses with one appliance (f) Sub problem for appliances

Figure 6.3: �e division into master and sub problems

Initial phase

In the initial phase subroutine, the master problemmakes use of a rough estimation

of the possibilities for local entities, by aggregating information from these local

entities. �is information is used to derive objective bounds for the local sub

problems. Simultaneously, initial pattern sets are created for sub problems.

Method in progress

�e subroutine ‘method in progress’ tries to improve on the matching problem,

which wants to create for each sub problem a total pattern that equals the rough
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estimation of the initial phase. When the solutionmethod progresses, pattern sets of

local sub problems are extended in order to improve the match to the local bounds.

�ese extended pattern sets are used to solve the sub problems to achieve a new

(and better) solution. �is solution represents a new pattern one step higher in the

hierarchical structure, i.e. it leads to new (combined) patterns on this higher level.

Eventually, the rough planning in the highest level (the root) is approximated using

the latest information.

�is subroutine is an iterative process, in which the local sub problems can be

repeatedly solved, based on new information from above. If a new solution in a

sub problem has been determined that ful�lls (partly) the requested changes, it is

sent to a higher level, where the same process is repeated. We choose to continue

this iterative process at each level, until no improvements on the requested changes

occur in this level.

Final solution

If the solutions to the approximation of the local entities within the master problem

show the desired behaviour, or if the iterative process in the previous subroutine is

�nished, the solution method stops. �e master problem is solved using this latest

information, where the rough planning is replaced by the best found approximation

for the local entities. Depending on the quality of the �nal result, the root (top level

node) may decide to repeat the complete planning process, starting with the initial

phase. In this case information from the �nal result serves as additional input for

the initial planning phase.

6.4 Results

�e general energy planning problem is tested for an instance that consists of 5000

houses. �is number of houses corresponds to a small town or a large village, or a

cluster of small villages. �is amount of houses su�ces for a thorough analysis of

the behaviour of the lower levels of the hierarchical structure of the problem (i.e.

level 2 and below). Since the planning heuristic is set up in a hierarchical way, the

step towards including the �rst level when solving a problem instance with millions

of houses at the lower levels is possible in theory, by adding the �rst level and solving

the corresponding pattern matching problems. In practice we did not perform such

a test, since the problem is currently being solved on a single computer, due to the

unavailability of a network version of the modelling so�ware AIMMS. However,

note that the number of (local) generators is signi�cantly larger than the problem

instances that usually occur in the �eld of Unit Commitment (see Chapter 2).

We consider two case studies. In the �rst case study we focus on controlling a

Virtual Power Plant consisting of 5000 microCHPs in combination with 10 small

power plants. �e second case study includes not only microCHPs, but also heat

pumps, controllable freezers, electrical cars and batteries.
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6.4.1 case study 1

To study the in�uence of generation on multiple levels in the electricity grid, we

set up a case study with two or three levels. We start with two levels, to see the

interaction between generators of di�erent production capacity in a direct way.

In the end we use an intermediate level to aggregate information from the lowest

level and communicate this information to above. In this illustrative example we

use 10 generators on the highest level, with a total production capacity of 15 MW.

�is capacity is divided over 5 generators with a capacity of 1 MW and a minimum

production level of 0.5 MW, and 5 generators with a capacity of 2 MW and a

minimum production level of 1 MW.�e (absolute) ramp up and ramp down rates

are equal to the minimum production for each power plant. Between the maximum

and minimum production values the operator of the generator has �exibility to

choose its power output, once the unit is committed. �e minimum runtime and

o ime are set to half an hour.

On the lowest level, we have 5000 houses containing a generator, leading to a

total capacity of 5 MW.�ese generators are microCHPs with a production output

of 1 kW. We neglect startup and shutdown times, meaning that the power output is

a direct result from the decision to run the microCHP at a certain moment in time.

As a consequence, there is no �exibility in the production level of committed low

level units. Flexibility can only be found in the moments in time that the units are

committed. However, these moments are constrained by the heat demand in the

houses: the used heat demand pro�les result in a maximum production of the �eet

over the planning horizon of 39.8 MWh and a minimum production of 35.1 MWh,

which is of the same order of committing a power plant for a complete day. �e

heat demand is de�ned in a similar way as in Chapter 3, using parametersMaxOn
andMinOn describing the �exibility of the operation of a single microCHP. �e
minimum runtime and o ime are again set to half an hour.

In the case study we de�ne four use cases to study the in�uence of introducing

a �eet of microCHPs in the UCP. For each use case we use time intervals of 30

minutes length; the commitment is planned for a complete day, which comes down

to 48 time intervals. �e total daily demand for the group of houses is 114.2 MWh,

with a peak of 8 MW and a base load of 2.5 MW. In this case study we do not

consider demand side load management. We require a spinning reserve of 2 MW

at all time intervals.

�e objective function combines pro�t maximization for the �eet and opera-

tional costs for the power plants. �e �rst use case is based on real prices from

the APX day ahead market 1. In the second use case we multiply all prices with

−1, which creates arti�cial negative values, to investigate to what extent the �eet

changes its decisions. �e third use case uses arti�cial prices that are based on the

daily electricity demand; the higher the demand, the higher the price. �is use case

is de�ned to investigate if the �eet can behave in such a way that peak demand can

be decreased and the demand for the power plants can be �attened. �e fourth use

1http://www.apxendex.com

http://www.apxendex.com
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case is the opposite of the third case, in the sense that prices are again multiplied

with −1; the higher the demand, the lower the price.
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Figure 6.4: �e operational cost functions of the power plants

In Figure 6.4 the cost functions of the power plants are given. �ey are modeled

as piecewise linear cost functions, to approximate quadratic operational cost func-

tions (see e.g. [102]). Below certain production levels (625 kWh for the large power

plants and 312.5 kWh for the small power plants) the cost functions of all power

plants of the same size are equal, and power plants are mutually exchangeable. �e

start of a power plant is furthermore penalized with a cost of 1000.

We use di�erent optimization problems in a structure as explained in Section 6.3.

�ese di�erent optimization problems are modeled as Integer Linear Programming

formulations in AIMMS modeling so�ware using CPLEX 12.2 as solver.

On the highest level, the operation of the power plants is optimized and a rough

planning of the microCHPs is made, based on aggregated information from the

operational �exibility of all households. A so-called �eet production f is intro-
duced, which represents the total production of the �eet of microCHPs. �is �eet

production respects total maximum and minimum generation constraints which

are bound by the sum ofMaxOnm andMinOnm for all 5000 microCHPs m. Also
in each time interval at most 5000 microCHPs can possibly generate, which gives

an additional bound of 2500 kWh per half an hour interval. Using this aggregated

information of the group of microCHPs, the master problem �nds an overall rough

planning of how much microCHPs are running in the di�erent time intervals,

combined with the operation of the power plants. Hereby, no individual planning

of the microCHPs is carried out; it is only ensured that the restrictions resulting

from the aggregated heat demand parameters and the production capacity of this

VPP are taken into account. Next to the �eet production f for the VPP, we in-
troduce operational costs c ij for the power plants. �e form of the general energy
planning problem that combines the microCHP planning problem with the Unit
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Commitment Problem is summarized in the following ILP formulation:

min∑
i , j
c ij +∑

i , j
(1000 × start ij) −∑

j
π j f j (6.40)

∑
i
x ij + f j ≥ d j ∀ j ∈ J (6.41)

∑
i
(u ijx i ,max − x ij) ≥ r j ∀ j ∈ J (6.42)

start ij ≥ u ij − u ij−1 ∀i ∈ I,∀ j ∈ J (6.43)

c ij ≥ Airx ij + B ir ∀i ∈ I,∀ j ∈ J ,∀r ∈ R (6.44)

x ij ≤ x i ,maxu ij ∀i ∈ I,∀ j ∈ J (6.45)

x ij ≥ x i ,minu ij ∀i ∈ I,∀ j ∈ J (6.46)

x ij − x ij−1 ≤ s i ,up ∀i ∈ I,∀ j ∈ J (6.47)

x ij − x ij−1 ≥ s i ,up ∀i ∈ I,∀ j ∈ J (6.48)

u ij ≥ u ij−k − u
i
j−k−1 ∀i ∈ I,∀ j ∈ J , k = 1, . . . , t i ,mr − 1 (6.49)

1 − u ij ≥ u ij−k−1 − u
i
j−k ∀i ∈ I, j ∈ J , k = 1, . . . , t i ,mo − 1 (6.50)

2

j

∑
k=1
fk ≤ ∑

m
MaxOnm , j ∀ j ∈ J (6.51)

2

j

∑
k=1
fk ≥ ∑

m
MinOnm , j ∀ j ∈ J (6.52)

f j ≤ 2500 ∀ j ∈ J . (6.53)

�e objective minimizes costs c ij and the total number of starts, and maximizes the
pro�t π j f j of the �eet. Constraint (6.43) determines the start of the operation of a
power plant. In (6.44) the piecewise linear costs are calculated, using di�erent linear

inequalities indexed by r of the form Airx ij + B ir . �e use of (6.44) in combination
with the objective of minimizing c ij is su�cient to model the approximation of
quadratic operational costs. Equations (6.51)-(6.53) give the aggregated bounds on

the �eet production. �e factor 2 is used since we use time intervals of half an hour

andMaxOnm andMinOnm are de�ned in time intervals.

�e above ILP formulation gives, next to a planning of the power plants, a

desired �eet production f̂ = f . �is production f̂ needs to be approximated by
solving the microCHP planning problem, where Pupper = P l ower = f̂ . We use
such tight bounds to see to what extent the planning method is able to reach the

rough planning exactly. For sake of completeness, the ILP formulations that give

the pattern generation method for this particular desired aggregated production

are given below. �e sub problem that combines patterns for individual microCHPs
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to generate aggregated patterns is given by:

min

NT
∑
j=1

(sl j + ex j) (6.54)

N
∑
m=1
∑
p∈Sm

pep , j ym ,p + sl j ≥ f̂ j ∀ j ∈ J (6.55)

N
∑
m=1
∑
p∈Sm

pep , j ym ,p − ex j ≤ f̂ j ∀ j ∈ J (6.56)

∑
p∈Sm

ym ,p = 1 ∀m ∈ {1, . . . , 5000} (6.57)

sl j , ex j ≥ 0 ∀ j ∈ J (6.58)

ym ,p ∈ {0, 1}, (6.59)

where Sm represents the set of patterns that are generated for microCHPm. Initially
each microCHP has two operational patterns. �e �rst pattern is determined by

postponing the generation to the latest possible time intervals, based on the values

forMinOnm that determine the delayed operation that is feasible when the heat
demand is taken into account. �e second pattern follows the opposite idea: this

pattern generates as early as possible, based on the values for MaxOnm (which
satisfy the heat demand, by producing as early as possible). Naturally, minimum

runtime and o ime requirements are satis�ed, since we deal with intervals of

half an hour. New patterns for individual microCHPs are created by solving the

following sub problem:

max

NT
∑
j=1

λ j(peg , j − pec , j) (6.60)

j

∑
k=1
peg ,k ≤

1

2
MaxOnm , j ∀ j ∈ J (6.61)

j

∑
k=1
peg ,k ≥

1

2
MinOnm , j ∀ j ∈ J (6.62)

2peg , j ∈ {0, 1} ∀ j ∈ J , (6.63)

as in the column generation approach of Chapter 3. �e factors 2 and 1
2
again origin

from the di�erence between the amount of energy, which is denoted in kWh, and

the number of intervals per hour which is 2.

In case we use an additional level between the household level and the top level

as we do at the end of this case study, the information exchange from the individual

houses to the centralized operator of this general energy planning problem takes

place in two steps. In case of this 2-step approach, the generated patterns of a limited

number of houses are combined in a subgroup G l , where patterns are combined
to form aggregated patterns that are communicated to above. �ese aggregated
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patterns need to ful�ll a certain part of the total required production f̂ , denoted
by f̂ l . �e formation of these aggregated patterns is given by the following sub
problem, that combines individual patterns to create aggregated patterns for sub

�eets:

min

NT
∑
j=1

(sl lj + ex lj) (6.64)

∑
m∈G l

∑
p∈Sm

pep , j ym ,p + sl lj ≥ f̂ lj ∀ j ∈ J (6.65)

∑
m∈G l

∑
p∈Sm

pep , j ym ,p − ex lj ≤ f̂ lj ∀ j ∈ J (6.66)

∑
p∈Sm

ym ,p = 1 ∀m ∈ G l (6.67)

sl lj , ex lj ≥ 0 ∀ j ∈ J (6.68)

ym ,p ∈ {0, 1} ∀m ∈ G l . (6.69)

�e pattern set S l of subgroup l consists of patterns w l that are formed by aggregat-
ing patterns w l = (w l1 , . . . ,w lNT ) = ( ∑

m∈G l
∑
p∈Sm

pep ,1 ym ,p , . . . , ∑
m∈G l

∑
p∈Sm

pep ,NT ym ,p)

that are found by solving (6.64)-(6.69). �e total mismatch from the desired gener-

ation f̂ is found by selecting exactly one pattern from each pattern set S l for all L
subgroups, as follows:

min

NT
∑
j=1

(sl j + ex j) (6.70)

∑
l
∑
w l ∈S l

w lj yw l + sl j ≥ f̂ j ∀ j ∈ J (6.71)

∑
l
∑
w l ∈S l

w lj yw l − ex j ≤ f̂ j ∀ j ∈ J (6.72)

∑
w l ∈S l

yw l = 1 ∀l (6.73)

sl j , ex j ≥ 0 ∀ j ∈ J (6.74)

yw l ∈ {0, 1}. (6.75)

By combining the above ILP formulations in an iterative structure as sketched

in Section 6.3 a detailed planning for the �eet of microCHPs is found. In a �nal

step, the resulting f -values of this detailed �eet planning are added in the master
problem (6.40)-(6.53) to calculate a unit commitment of the power plants based on

the given planning for the �eet. In detail, constraints (6.51)-(6.53) are replaced by a

constraint stating that the variables f are �xed to the values of the best found �eet
planning b f : f ∶= b f .
We refer to (6.40)-(6.53) as the rough planning. (6.60)-(6.63) is the problem that

creates patterns. �e ILP formulation (6.54)-(6.59) combines the created patterns in
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one step (from individual patterns formicroCHPs to global �eet patterns). Problems

(6.64)-(6.69) and (6.70)-(6.75) represent the problem of creating patterns in a

subgroup and of combining subgroup patterns in a higher level respectively. �e

resulting approach is summarized in Algorithm 4.

�e algorithm continues until no improvement is found in the solution of the

high level pattern combination problem. It iteratively adds patterns at a household

level in case these patterns show the possibility to improve the global problem. �e

creation of patterns at a household level stops whenever the �rst pattern occurs that

does not show a possibility to improve on the total mismatch or when the subgroup

it belongs to is not active anymore. A complete subgroup remains active as long

as improvements are found in its own pattern creation problem, meaning that the

found new pattern should improve on the best mismatch to the desired bounds for

the subgroup. When no improvement is found, the subgroup is no longer active. In

case no subgroup is active anymore or if no improvement is found on the highest

level by combining patterns on this level, the method stops. At the end, a �nal

planning is calculated, which determines the unit commitment of the power plants,

based on the found planning for the individual microCHPs.

Results and discussion

In this section we discuss the solutions of the four use cases, which are found by

the planning method.
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Figure 6.5: �e solution of the UCP

Figure 6.5 shows the detailed solution of the UCP, where we do not use the

5000 houses and the complete demand is ful�lled against minimal operational

costs. �e commitment and corresponding generation patterns are given for the 10

power plants. �is solution is used to validate the optimization model. At any time

interval, the spinning reserve of 1000 kWh (2 MW for time intervals of 30 minutes

length) is available within this solution. �e ramp rates are taken into account; the
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Algorithm 4 Case study 1
init Sm ∶= {pm1 , pm2 } for all microCHPs m: pm1 is chosen such that pepm1 , j post-
pones the generation to the latest time intervals possible and pm2 such that pepm2 , j
generates as early as possible.

solve rough planning (6.40)-(6.53)

for all l do
f̂ l ← f

L
end for
if L > 1 then
for all l do
solve create subgroup patterns (6.64)-(6.69)

S l ← S l ∪w l
end for
solve combine subgroup patterns (6.70)-(6.75)

for allm do
solve create patterns on lowest level (6.60)-(6.63)

end for
else
solve combine patterns on the highest level (6.54)-(6.59)

for allm do
solve create patterns on lowest level (6.60)-(6.63)

end for
end if
while stopping criteria not met do
update best �eet planning b f

for all m:
NT
∑
j=1

λ j(peg , j − pec , j) > 0 do

Sm ← Sm ∪ g
end for
if L > 1 then
for all active l do
solve create subgroup patterns (6.64)-(6.69)

S l ← S l ∪w l
end for
solve combine subgroup patterns (6.70)-(6.75)

for all active m do
solve create patterns on lowest level (6.60)-(6.63)

end for
else
solve combine patterns on the highest level (6.54)-(6.59)

for all active m do
solve create patterns on lowest level (6.60)-(6.63)

end for
end if

end while
update best �eet planning b f
solve �nal planning (6.40)-(6.53) where f ∶= b f
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minimum and maximum production constraints of the individual power plants

are considered too. �is can best be seen when a generator shuts down. �e time

interval before a generator shuts down, the production is reduced to the minimum

production level, which happens to be equal to the (absolute) maximum ramp up

and ramp down rates. In this case the generator may shut down in the next interval.

We see that nine of the ten units are committed during the day; each power plant is

started at most once.

case 1 case 2

rough detailed rough detailed

operational costs 158748 164846 163593 169325

# of starts 5 6 5 8

computational time (s) 32.28 1543.10 26.91 1798.19

mismatch (kWh) 2236.5 986

mismatch/rough prod. (%) 5.6 2.8

fleet production (kWh) 38926 35589

case 3 case 4

rough detailed rough detailed

operational costs 154748 163230 154748 167730

# of starts 5 5 5 9

computational time (s) 61.72 1753.56 7.40 1451.00

mismatch (kWh) 3099.5 478.5

mismatch/rough prod. (%) 7.8 1.2

fleet production (kWh) 37927 38868.5

Table 6.1: General energy planning problem results for the �rst case study

Table 6.1 shows the results for the general energy planning problem, where we

incorporate the �eet of 5000 houses. �e table shows the operational costs of the

power plants, both for the initial planning with the rough �eet constraints (rough)

and for the �nal result a�er applying the pattern generation process to the �eet

and replanning the power plants using the elaborated �eet pattern (detailed). It

also shows the number of starts for the power plants, again for the rough planning

and for the �nal result. �e computational time of the detailed result includes the

computational time of the rough planning. Regarding the �eet planning, the �nal

mismatch of the planning of the 5000 houses to the production plan f in the rough
planning (i.e. absolute deviation from f ) is given in kWh and in percentage of the
total generation of this production pattern f . �e resulting total generation of the
5000 houses is given in the last row of Table 6.1. Since we mostly use arti�cial prices

for the electricity market, we do not show the pro�t maximization of the �eet in

more detail.

�e operational costs of the detailed planning are relatively close to the rough

planning operational costs in all cases. �is means that the commitment of the

power plants is not altered too drastically a�er the elaborated planning of the �eet.

Of course the �nal costs are higher, since the rough planning gives the optimal

combination of power plant operation and �eet operation, whereby some constraints

of the �eet are relaxed. �e four use cases show that we are able to steer the �eet

production by using di�erent prices. �e number of starts of the power plants

increases in all cases, except for the third use case. In case 3 the power plants

need only 5 starts in the �nal �eet planning. �is is mostly due to the initial �eet
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planning, which is aimed to reduce the peaks in the demand. In the realization

of this planning the �eet has relatively much di�culties, since the mismatch from

the rough planning is the highest of the four cases. Nevertheless this realization

leaves enough possibilities for the power plants to �nd a planning that only needs 5

commitments. �e big advantage is that the �eet does not interfere too much with

the base load, which simpli�es the continuity of the commitment in time intervals

with low demand.

�e computational time of the planning method stays below half an hour in all

cases. �is is acceptable for a practical application, especially since the column gen-

eration technique can be distributed over the smart grid in real life. �e mismatch

from the rough planning is below 8%. Figure 6.6 shows the development of the
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Figure 6.6: �e mismatch during the column generation for the four use cases

mismatch during the column generation method. �e �nal solution is found a�er

approximately 10 iterations. �e existence of a mismatch can be partly explained by

the relaxations in the rough planning, but also by the fact that we used a maximum

runtime of 60 seconds for the pattern matching problem, which tries to select exacly

one pattern for each house to minimize the mismatch from the rough planning.

�is maximum runtime results in a preliminary abortion of the solution method in

all four cases. From this we may conclude that the �eet even may perform better, to

the costs of higher computational time. Finally we see that the total �eet production

approximates the upper production bound of 39.8 MWh in use cases 1, 3 and 4,

whereas the total �eet production in case 2 is close to the lower production bound

of 35.1 MWh. �is indicates that the prices in case 2 are too negative, such that it is

more cost e�ective to let the power plants produce more.

Figure 6.7 shows the unit commitment of the 10 power plants and the �eet

production of the 5000 houses in the second use case. Figure 6.7a gives the rough

�eet planning and Figure 6.7b gives the resulting, �nal �eet planning. We present

the results of this use case in more detail to describe two phenomena that occur.

Firstly, we see three short periods of commitment of the small power plants 1 and 3
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Figure 6.7: �e second use case in more detail (for a legend, see Figure 6.5)

in the �nal planning. �ese commitments are not necessary to ful�ll the demand;

the already committed power plants could have supplied this additional demand

themselves, even against lower costs. However, in that case there would not be

su�cient spinning reserve le� in the committed power plants. For this reason,

power plants 1 and 3 have to be committed during these periods. Secondly, we see

many di�erent generators committed in the �nal planning, in comparison with the

rough planning. However, as we have stated before, below certain production levels

(625 kWh for the large power plants and 312.5 kWh for the small power plants) the

cost functions are equal, and power plants are mutually exchangeable. �is could

explain the larger number of committed generators.
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Figure 6.8: Comparison of rough planning and �nal found solution for the planning

of the local generators in the second use case
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Finally, we present the rough �eet planning and the �nal �eet planning in one

overview in Figure 6.8. �is �gure shows that the rough planning is matched to a

large extent.

As a �nal part of this case study we extend the two leveled approach with an

additional level in between the microCHP level and the highest level. We de�ne

group sizes of 5000, 1000, 500 and 100, which corresponds to 1, 5, 10 and 50 di�erent

groups. �e desired production for each group f̂ l is set to be equal to the total
desired production for the �eet divided by the number of groups. Table 6.2 shows

the results for these group sizes for the �rst case. �e mismatch is the smallest

# fleets total mismatch iterations time (s)

1 2237 11 1543.10

5 1582 31 10773.52

10 1896 35 16457.06

50 2561 20 11892.13

Table 6.2: Solving the microCHP planning problem using an intermediate level

when 5 groups are used, which corresponds to group sizes of 1000 microCHPs. �e

increase in computational e�ort for an increasing number of �eets is related to the

number of times that an ILP problem is solved that needs to combine patterns and

minimize mismatch. �is type of ILP problem, that combines patterns to create

new ones on a higher level, consumes the largest part of the computational time.

Note that in practice, such problems can be solved in parallel, since each subgroup

can be regarded as a stand alone entity.

6.4.2 case study 2

�e second case study builds upon the �rst one. It extends this case study by

adding other types of distributed generation, distributed storage and load side

management. Inmore detail, next to the power plants and themicroCHP appliances

of the previous section, we consider heat pumps, electrical vehicles, controllable

freezers and storage capacities in the form of large batteries in households. �is

case study is intended to show the relation between microCHPs and heat pumps,

to see whether a large share of heat pumps related to microCHPs has its impact

on the pro�t maximization of the Virtual Power Plant. Next to this, we want to

indicate whether the mismatch between the rough planning and the �nal planning

as we have noticed in the previous case study can be compensated by using demand

side load management and distributed storage. �e electrical cars are added in

one use case to see whether it is possible to allow a large share of electrical cars in

a neighbourhood, without this leading to large peaks in electricity consumption.

Also, the case study is used to show the potential of the proposed methods.

We use an equivalent framework as in the �rst case study to perform our evalu-

ation, whereby we focus on 5000 houses, grouped in groups of 1000 houses, since

the choice for this group size shows the smallest mismatch in the �rst case study.

Opposite to having only local �exibility via the generation by a microCHP, we now

have di�erent options to shi� with the generation and/or consumption of electricity.
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We have chosen to use di�erent forms of contribution to solve the general energy

planning problem for the above options. �ese contributions di�er in the desired

operation for the group of each type of appliance. �e operation of the set of mi-

croCHP appliances, the set of heat pumps and the set of electrical cars is required

to follow a certain aggregated pattern, that is de�ned by solving a rough global

planning problem using aggregated information on these appliances. �e opera-

tion of the set of freezers and the set of batteries is not bound by globally de�ned

cooperative patterns. Instead, their operation is completely free for each individual

appliance, thereby reserving full potential to compensate for the mismatch that

might be the result of the planning of the microCHPs, heat pumps and electrical

cars.

�e heat demand in this case study is equal to the heat demand in the �rst case

study. �is heat demand is either ful�lled by the production of a microCHP or by

the production of a heat pump; we do not consider both appliances in the same

house simultaneously. �e total electricity demand of the group of 5000 houses is

equal to the proposed electricity demand in the previous case study. �is implies

that the normal operation of the group of freezers is already part of this electricity

demand. For this normal operation, di�erent aggregated consumption patterns for

the group of freezers are possible. From these patterns we have chosen the pattern,

where the consumption of the total �eet of freezers is �attened as much as possible

over the day.

To be able to investigate demand side management using the freezers, we need

as starting point the normal operation of all individual freezers. �e in�uence of

demand sidemanagement is then determined by the change of the normal operation.

For freezers the regularity in electricity consumption makes it relatively easy to

derive a �at pattern as this normal operation. �is aggregated pattern is formed

in such a way that the freezer temperature at the end of the planning horizon is

(almost) equal to the initial temperature. �e creation of individual patterns that

form this �at pattern is explained in the following. First we show the necessary

changes for the switch from using 6 minutes intervals to 30 minutes intervals in

the modelling description of the freezer planning. �en we give the details on the

�at pattern that serves as the basic pattern for this case study.

As stated earlier, we use freezers with a power consumption of 150 W and allow

binary decisions to cool or not to cool in 6 minutes intervals. To achieve a pattern in

which initial and end temperatures are equal, we need on average to cool during 1
6
th

of the available time. Since the case study works with 30 minutes time intervals, we

have to translate the proposed formulation (6.14)-(6.16) into a formulation that is

valid for time intervals of half an hour and that accommodates operational �exibility

in 6 minutes periods. �is translation is done by introducing modulation in the

operation of a freezer:

d ij ∈ {0, 1, 2, 3, 4, 5}, (6.76)

where d ij represents the number of 6 minutes periods that freezer i is cooling in the
30 minutes time interval j. In addition to this change of (6.14) into (6.76), (6.15)
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changes into:

T̂min ≤ T iini t + j × 5 × ∆To f f − ∆Ton ×
j

∑
k=1
d ik ≤ T̂max ∀i ∈ I∀ j ∈ J , (6.77)

and (6.16) remains unchanged. �e bounds Tmin and Tmax are increased and de-
creased respectively, to accompany the shi� from 6 minutes intervals to 30 minutes

intervals:

T̂min = Tmin + 4 × ∆To f f (6.78)

T̂max = Tmax − 4 × ∆To f f . (6.79)

�ese new bounds are necessary to allow the cooling process to take place in any

original 6 minutes interval without violating the original bounds Tmin and Tmax.
�e electricity consumption remains f ij = FC id ij , where we have FC i = 15 Wh.
To create a �at pattern where initial and end temperatures remain unchanged,

we should have an electricity consumption of 150 × 1

6
× 1

2
× 5000 = 62500 Wh in

each time interval (150 W consumption in 1
6
th of the time per half an hour interval

times the number of freezers). Since 62500 cannot be divided by 15 (which is the

multiplication factor of individual consumption), this �at pattern cannot be reached

completely by the group of freezers. �erefore we change this average consumption

slightly to the nearest multiple of 15, which is 62505. For the 5000 freezers we now

propose the following operation patterns:

d ij =
⎧⎪⎪
⎨
⎪⎪⎩

0 + d̂ ij if (i + j) mod 6 = 0

1 + d̂ ij otherwise,
(6.80)

where

d̂ ij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if j = 1 + 3i ∀i ∈ {1, 3, . . . , 15}

1 if j = −1 + 3i ∀i ∈ {2, 4, . . . , 16}

0 otherwise.

(6.81)

�is division of operation patterns follows the �at pattern exactly.

For the remaining available options (i.e. batteries, microCHPs, heat pumps and

electrical cars) we do not de�ne normal operational patterns. �ese options are not

part of the normal electricity consumption pattern in this case study. �ey are either

not desired to be used (batteries) or they have such a large power consumption/-

generation parameters that we consider them as standalone entities (microCHPs,

heat pumps and electrical cars).

Rough planning of the operation of microCHPs, heat pumps and electrical cars

In the �rst case study the operation of the group (�eet) of microCHPs is �rst roughly

planned on an aggregated level, at which the generation level is of a similar order of
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magnitude as that of the used power plants. In this case study we do the same for

the combination of the �eet of microCHPs, the �eet of heat pumps and the �eet of

electrical cars. Instead of determining generation possibilities fmchp as is the case
with microCHPs, in the case of heat pumps and electrical cars we have to determine

electricity consumptions ( fhp and fec) for the �eet of heatpumps and electrical cars.
�e incentive for the �eet of microCHPs remains to make pro�t on an electricity

market, while simultaneously the operational costs for the 10 power plants are

minimized. For both the group of heat pumps and the group of electrical cars the

incentive is to plan wisely to accommodate this simultaneous pro�t maximization

and cost minimization. �erefore the objective function of the rough planning

problem (6.40)-(6.53) remains unchanged, while we see a di�erence in constraint

(6.41), where the electricity demand is increased (and/or decreased) by the use of

heat pumps and electrical cars (note that discharging the battery of an electrical car

is represented by negative values for f j ,ec):

∑
i
x ij + f j ,mchp ≥ d j + f j ,hp + f j ,ec ∀ j ∈ J . (6.82)

Of course we also need to change the constraints that bound the total �eet produc-

tion of the microCHPs and extend this formulation with the relevant requirements

for the �eet consumption for the heat pumps and the electrical cars that are based

on aggregated information. Let the set Mmchp denote the set of houses that are
equipped with a microCHP, Mhp the set of houses with a heat pump and Mec
the set of electrical cars. �e constraints that bound the �eet production for the

microCHPs (constraints (6.51)-(6.53)) become:

2

j

∑
k=1
fk ,mchp ≤ ∑

m∈Mmchp

MaxOnm , j ∀ j ∈ J (6.83)

2

j

∑
k=1
fk ,mchp ≥ ∑

m∈Mmchp

MinOnm , j ∀ j ∈ J (6.84)

f j ,mchp ≤
∣Mmchp ∣
2

∀ j ∈ J . (6.85)

For the �eet of heat pumps this is represented by the constraints:

j

∑
k=1
fk ,hp ≤ ∑

m∈Mhp

MaxOnm , j ∀ j ∈ J (6.86)

j

∑
k=1
fk ,hp ≥ ∑

m∈Mhp

MinOnm , j ∀ j ∈ J (6.87)

f j ,hp ≤ ∣Mhp ∣ ∀ j ∈ J . (6.88)

We lose a factor of 2 compared to (6.83)-(6.85), since the COP of a heat pump is 4
which is half of the electricity to heat ratio α = 8 for the microCHPs.
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�e constraints for the consumption of the electrical cars are based on the choice

for the availability periods for the cars. We assume that the electrical cars arrive

between 5 and 7 pm and leave between 5 and 7 am. �us, they have to be charged

overnight. For our one-day model this leads to a problem on how to de�ne the

initial levels of the battery. We request that overnight the cars have to be charged

completely and that by day the cars consume an amount of electricity which is

equal to 50 − 90% of the battery capacity, i.e. at the begin of the charging period

the batteries have a load of 10 − 50%. Furthermore, we assume that each car has

a repetive behaviour (i.e. it shows the same arriving and departing behaviour for

consecutive days). For the rough planning, we assume that half of the charging is

done between arriving and the end of the day and the other half is done between

the start of the day and departure. Using this information in a global setting, we

pose the following constraints on the �eet consumption of the electrical cars, using

f aec to denote the consumption between arrival and the end of the planning horizon
and f bec to denote the consumption between the start of the planning horizon and
departure. �emaximum amount of electricity that a car can be charged per interval

MCm is set to 5 kWh.

f j ,ec = f aj ,ec + f bj ,ec ∀ j ∈ J (6.89)

f aj ,ec ≤ ∑
m∈Mec

MCmAm ,aj ∀ j ∈ J (6.90)

f aj ,ec ≥ − ∑
m∈Mec

MCmAm ,aj ∀ j ∈ J (6.91)

∑
j∈J
f aj ,ec = ∑

m∈Mec

CCm − BBL i

2
(6.92)

f bj ,ec ≤ ∑
m∈Mec

MCmAm ,bj ∀ j ∈ J (6.93)

f bj ,ec ≥ − ∑
m∈Mec

MCmAm ,bj ∀ j ∈ J (6.94)

∑
j∈J
f bj ,ec = ∑

m∈Mec

CCm − BBL i

2
(6.95)

Compensating mismatch by using freezers and batteries

�e rough planning of the operation of the group of microCHPs, heat pumps

and electrical cars gives a planning that enables power plants, microCHPs, heat

pumps and electrical cars to operate optimally in a combined setting. �is sketch

of the planning needs to be followed as good as possible by determining individual

patterns for the di�erent devices. �is determination of individual patterns is done

in a similar approach as shown in the previous case study, whereby the creation

of new individual patterns is bounded by individual local constraints as shown

in Section 6.1. Note that, although the process of matching the sum of individual

patterns to the �eet patterns is executed sequentially in the calculations that are

presented (since we have no network version of the solver), in practice this process
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could be executed in parallel. A�er the planning of the microCHPs, the heat pumps

and the electrical cars, the resulting mismatch from the rough planning is input for

the planning of the group of freezers and the in-home batteries.

�e normal freezer operation as proposed earlier in this section allows for a

certain �exibility. Since the normal operation follows a �at pattern of exactly 62.505

kWh per interval, the maximal deviation from this pattern for each interval is

bounded by the range [−62.505, 312.495] (in kWh), since all freezers canmaximally

consume 375 kWh combined in one interval. Negative values indicate less consump-

tion than in the basic �at pattern, positive values indicate more consumption. For

the inhome batteries we de�ne batteries with capacity CCm = 20 kWh, maximum

amount of (dis)charged electricityMCm = 2 kWh per time interval and initial level

BBlm = 10 kWh. For these batteries the level at the end of the day may vary between

8 and 12 kWh, since we do not want to postpone di�culties in matching demand

and supply to planning problems for consecutive days. Besides these constraints

over the complete time horizon, the use of batteries o�ers far more �exibility in

the amount of electricity that can be compensated per time interval: this compen-

sation is bounded by the range [−10000, 10000] in kWh. Positive values indicate

consumption (charging the battery), negative values indicate supply (discharging

the battery). Although the battery o�ers more �exibility, we prefer compensation

by the group of freezers over the group of batteries, due to the limited amount of

charge cycles that a battery can have. �erefore we penalize the use of batteries by a

small cost.

Setup of scenarios in the case study

We study di�erent setups for the 5000 houses in this case study. In these scenarios

the APX prices are equal to the ones that are used in the �rst scenario of the previous

case study. Furthermore, all houses are equipped with a freezer and a battery.

We consider a particularly cold day in winter. In this situation the houses have

a signi�cant heat demand, which is to be supplied by use of either a microCHP or a

heat pump. �e heat demand is equal to the heat demand in the previous case study.

Table 6.3 shows the division of the number of microCHPs, heat pumps, electrical

cars, freezers and batteries over the di�erent scenarios.

scenario 1 2 3 4 5 6 7

# of power plants 10 10 10 10 10 10 10

# of microCHPs 5000 4000 3000 2000 1000 0 3000

# of heat pumps 0 1000 2000 3000 4000 5000 2000

# of electrical cars 0 0 0 0 0 0 1000

# of freezers 5000 5000 5000 5000 5000 5000 5000

# of batteries 5000 5000 5000 5000 5000 5000 5000

Table 6.3: Description of the scenarios in the second case study
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Computational limits

�e di�erent optimization problems that are solved in the general energy planning

problem are bounded in their maximal computational time. �is leads to upper

bounds on the computational time, both in case of sequential and in case of parallel

computation. Here we give these upper bounds.

In the rough planning problem, as well as in the �nal planning problem, we limit

the computational time to 60 seconds. As stated before we use �eets of 1000 houses

in our hierarchical structure. Each pattern combination problem for these �eets, as

well as the pattern combination problem that uses �eet patterns (on a higher level),

also has a maximal computational time of 60 seconds. �e creation of patterns

(of individual microCHPs, heat pumps, electrical cars, freezers and batteries) at

individual houses is limited by a maximal time of 1 second. In relation to these time

limits, the practical communication time that is needed for exchanging information

is neglected. �e upper bound in case of sequential computation, related to the

number of iterations k is then 60 + k × (5000 × 1 + 5 × 60 + 60) + 5000 × 1 +

60 = 5120 + 5360 × k, whereas the upper bound in case of parallel computation is
60 + k × (1 + 60 + 60) + 1 + 60 = 121 + 121 × k.

Results and discussion

�edi�erent scenarios are implemented in AIMMS and solved by using CPLEX 12.2.

Table 6.4 shows a summary of the important results of these scenarios. For the rough

planning we show the operational costs (including startup costs) of the 10 power

plants and the number of starts in the planning horizon. �e total pro�t of the �eet of

microCHPs is also depicted, as well as the computational time of this rough planning.

A�er the rough planning is known, a detailed planning for individual appliances is

found. For these detailed patterns the total mismatch from the rough planning is

shown for the di�erent types of appliances. �e percentual mismatch compared

to the total amount of roughly planned electricity production/consumption and

the number of iterations that is used to �nd the smallest mismatch are also given.

Next to this, the pro�t for the group of microCHPs a�er the detailed planning is

shown. �e computational times show the total elapsed time since the start of the

planning process, including the time that is needed to �nd the rough planning. �e

last three rows in the table give the absolute amount of electricity that is planned

for the freezers and inhome batteries to compensate for the total mismatch in each

scenario. �is value is found by using 1 planning iteration and the additional time

that is needed for this leads to the total time depicted in the last row of the table.

�e �rst scenario shows that the freezers and batteries cooperate in compen-

sating the mismatch of the microCHPs. In one time interval the group of freezers

and the group of batteries act in opposite directions (note that this only occurs in a

few individual freezer patterns with minor total in�uence). Scenario 6 shows that

the freezers and batteries can also compensate the mismatch of 5000 heat pumps

completely, although this requests a larger compensation than in the �rst scenario

and leads to more opposite behaviour of the freezers and the batteries. In scenarios
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scenario 1 2 3 4 5 6 7

ro
u
g
h

operational costs power plants 158748 198558 242586 287635 332666 377794 312586

# of starts power plants 5 6 6 7 8 9 6

profit maximization microCHPs (e) 6871.42 5940.25 4506.71 3011.28 1504.78 - 4506.71

profit (e/microCHP) 1.37 1.49 1.50 1.51 1.50 - 1.50

computational time (s) 61.49 60.92 10.13 14.54 22.03 7.16 4.93
d
e
ta
il
e
d

profit maximization microCHPs (e) 6398.00 5464.44 4222.11 2833.80 1408.13 - 4236.15

profit (e/microCHP) 1.28 1.37 1.41 1.42 1.41 - 1.41

microCHP mismatch (kWh) 1581.5 3066 1923 1287.5 806 - 1857

microCHP mismatch (%) 4.0 9.6 8.0 8.1 10.1 - 7.8

microCHP iterations 31 27 24 17 15 - 25

heat pump mismatch (kWh) - 984 986 1025 2235 2744 2055

heat pump mismatch (%) - 7.0 3.5 2.4 4.0 3.9 7.3

heat pump iterations - 17 24 14 17 20 16

electrical car mismatch (kWh) - - - - - - 2921.167

electrical car mismatch (%) - - - - - - 7.6

electrical car iterations - - - - - - 16

computational time (s) 10773.52 6348.28 6695.47 4768.52 5456.48 7375.12 6595.46

fi
n
a
l freezer compensation (|kWh|) 387.495 1500 1012 949.95 899.97 774.9 1999.995

battery compensation (|kWh|) 1194.065 2232 1426 1304.31 2215.85 2534.84 3734

computational time (s) 11101.59 6850.96 7155.94 5188.82 5808.47 8389.95 7055.46

Table 6.4: General energy planning problem results for the second case study

2-5 and in scenario 7 the mismatch of the microCHP �eet planning and the heat

pump �eet planning cancel each other out to some extent. �is can be seen by

comparing the sum of the mismatch for the microCHPs and the heat pumps to

the sum of the compensation that is o�ered by the freezers and the batteries. �is

second sum is smaller than the �rst one, although a complete compensation is

achieved: this indicates that part of the compensation is already o�ered by the

microCHPs and heat pumps themselves. �e remaining part, which is still the

largest fraction of the overall total mismatch, is completely compensated by using

freezers and batteries in all scenarios. �is implies that the operation of the power

plants as it was optimized in the rough planning does not need to be changed: the

operational costs remain the same.
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Figure 6.9: Operational costs related to additional electricity consumption

When the number of heat pumps increases the electricity consumption in-

creases almost linearly, since the di�erent households have heat demands that are
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comparable. �is increase in electricity consumption shows a linear increase in the

operational costs of the power plants in Figure 6.9. In the case of the addition of

electrical cars next to the usage of a set of heat pumps we see that the operational

costs do not follow this linear trend. �is is due to the �exibility that the electrical

cars o�er in the ability to increase the baseload that occurs in the night (see Figure

6.10). �e ratio between peak demand and base demand is decreased, which leads

to a demand that can be supplied more cost e�ective by the operation of the power

plants.

Regarding pro�t maximization of the microCHPs we see that heat pumps can

be planned in such a way that they o�er a situation in which both the pro�t of the

group of microCHPs and the operational costs of the power plants can be optimized.

Moreover, the addition of heat pumps next to microCHPs leads to a small increase

in the pro�t per microCHP, due to the �exibility of the heat pumps, which relieves

the problem of minimizing operational costs for the power plants. �e pro�t in

scenario 7 is equal to that of scenario 3. Although this equality might indicate

that the microCHPs focus on their own optimization in the combined problem of

pro�t maximization and cost minimization, the underlying �eet pattern for the

microCHPs di�ers on quite some time intervals: 26% of the two patterns has no

overlap. �is di�erence in patterns, in combination with the di�erent operational

planning of the heat pumps and the electrical cars, also helps optimizing the cost

minimization of the power plants. �e detailed planning leads to a decrease in

pro�t, which is comparable for all scenarios (about 94% of the pro�t of the rough

planning is reached).

�e mismatch in kWh for the di�erent �eets needs a short explanation. For

the microCHP �eets this mismatch is at most 10.1% of the total roughly planned

production. Note that the lower bound on the mismatch is 0 in all scenarios, which

would lead to the question why we are not able to reach this lower bound in these

scenarios. �ere are three explanations for this. First, we now aim at a single

desired pattern fmchp , instead of a band which is bound by upper and lower desired
patterns. �is leaves no room for compensation; once we �nd a mismatch in our

planning, the e�ect of this mismatch prolonges in the next time interval(s). Second,

the rough planning o�en plans at full �eet capacity or at zero production, which

are the extreme points of the rough planning. Finally, the computational time of

the problem of combining patterns at an intermediate level to form an aggregated

pattern for each �eet of 1000 elements has a time limitation of 60 seconds. Due to this

limitation, the problem of minimizing the mismatch from the desired �eet planning

is interrupted, also in case no improvement of the best mismatch is found. In all

scenarios this situation occurred. It is therefore a good advise to use the mismatch

between the actual planning and the rough planning to give feedback towards

making a new rough planning in an iterative setting, where the found mismatch

can be used to tighten the global bounds on electricity production. However, for

now, the results of the �nal part of the planning process, where the freezers and

batteries are planned, show that these appliances are able to ‘repair’ the mismatch

completely. Since a new rough planning would possibly lead to worse operational

schedules for the 10 power plants, we stick with the results a�er a single iteration in
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�nding a rough planning.

�e computational times show that the scenarios are solved using the sequential

implementation in a couple of hours (1.4 to 3.1 hours). �e computational bottleneck

is in solving the pattern combination problem, which minimizes the deviation from

the desired �eet planning, and not in the creation of patterns for the appliances.

�e computational times for this problem are limited at 60 seconds. By using

an additional level in the general energy planning problem we could introduce a

pattern combination problem, that has �eet patterns as input. By allowing 1000

di�erent �eets we have pattern combination problems of a similar size, for which

we propose a time limitation of again 60 seconds. In this setting, eventually a set

of 1000000 houses could be planned, since a large part of the computations would

occur in parallel.

To get a better feeling for the resulting planning, we show the outcome of the

planning process in a graphical way in Figure 6.10. �is �gure shows the rough

planning and the detailed planning for the scenario that includes 10 small power

plants, 3000 microCHPs, 2000 heat pumps, 1000 electrical cars, 5000 freezers and

5000 batteries. �e bottom half of each �gure gives the consumption; the upper

half gives the production of electricity. Figure 6.10a shows that the electrical cars

�ll the gap between peak- and baseload in the rough planning. Also the operation

of the �eet of heat pumps and the �eet of microCHPs is planned in such a way

that production and consumption cancel each other out for a large part. �is

leads to a situation in which the operation of the power plants can be scheduled

by applying almost constant operation levels. �e detailed planning in Figure

6.10b shows that the operation of the power plants is unchanged. �e in�uence of

shi�ing the consumption of the freezers and the availability of batteries both on the

consumption and the production side is visible, since the consumption equals the

generation at all time intervals.

6.5 Conclusion

�is chapter treats the general energy planning problem. �is problem is an ex-

tension of the Unit Commitment Problem (UCP), which treats the commitment

and economic dispatch of electricity generators. We add distributed generation,

distributed storage and demand side management possibilities to this problem,

thereby shi�ing the focus of this optimization problem towards the decentralization

within the Smart Grid.

�e general energy planning problem di�ers from the UCP in size and in

objective. �e amount of appliances that are operated within the problem increases

signi�cantly. �e inclusion of a Virtual Power Plant shows that the problem is not

only focusing on cost minimization for the central generators in the traditional

UCP, but it also concentrates on other objectives (e.g. pro�t maximization for

power plants or the cost e�ective use of local storage possibilities and demand side

management).

We propose a hierarchical structure to solve the general energy planning prob-
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Figure 6.10: Comparison of rough planning and �nal found solution for the planning

using 10 small power plants, 3000 microCHPs, 2000 heat pumps, 1000 electrical

cars, 5000 freezers and 5000 batteries
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lem, inwhich the di�erent elements are solved by formulating di�erent sub problems

in di�erent planning levels. �e general framework consists of creating patterns for

single entities/appliances, combining patterns for such appliances on higher levels

into so-called aggregated patterns, and using these aggregated patterns to solve a

global planning problem.

Two di�erent case studies show the applicability of the method. �e �rst case

study treats a group of 5000 microCHPs in combination with 10 power plants, to

show the direct combination of optimizing a VPP and solving a traditional UCP.�e

second case study adds heat pumps, electrical cars, freezers and inhome batteries as

examples of other types of distributed generation, distributed storage and demand

side management.



CHAPTER7
Conclusion

�e electricity supply chain is changing, due to increasing awareness for sustainabil-

ity and an improved energy e�ciency. �e traditional infrastructure where demand

is supplied by centralized generation is subject to a transition towards a Smart Grid.

In this Smart Grid, sustainable generation from renewable sources is accompanied

by controllable distributed generation, distributed storage and demand side load

management for intelligent electricity consumption. �e transmission and distri-

bution grid have to deal with increasing �uctuations in demand and supply. Since

realtime balance between demand and supply is crucial in the electricity network,

this increasing variability is undesirable.

Monitoring and controlling/managing this infrastructure increasingly depends

on the ability to control distributed appliances for generation, consumption and

storage. In the development of controlmethodologies, mathematical support, which

consists of predicting demand, solving planning problems and controlling the Smart

Grid in realtime, is of importance. In this thesis we study planning problems which

are related to the Unit Commitment Problem: for a set of generators it has to be

decided when and howmuch electricity to produce to match a certain demand over

a time horizon. �e planning problems that we investigate in this thesis are part of

a control methodology for Smart Grids, called TRIANA, that is developed at the

University of Twente.

7.1 Contribution of this thesis

�is thesis presents new planning problems in the emerging Smart Grid. It treats

these planning problems from two perspectives. First and foremost, the case of

a Virtual Power Plant, consisting of a collection of domestic combined heat and

power generators (microCHPs), is proposed. For this Virtual Power Plant case

179
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mathematical planning problems are formulated and solution approaches are devel-

oped.

�e microCHP planning problem

�ese planning problems deal with the decisions that have to be made for the

operation of microCHPs in households. �ese appliances need to ful�ll the heat

demand in the household, while globally the aggregated electricity output of the

microCHPs needs to ful�ll a desired production pattern. �e operation of the

microCHP itself is restricted to binary decisions to switch the appliance on or o�.

In the microCHP planning problem, the pro�t of the Virtual Power Plant on an

electricity market is maximized and/or the total deviation from a desired aggregated

electricity output is minimized.

Exact methods and heuristic methods

For the considered planning problem a mathematical description is given, which

is shown to beNP-complete in the strong sense, by reducing 3-PARTITION to

the microCHP planning problem. Exact formulations by modelling the problem

as an Integer Linear Programming or a dynamic programming model show that

practical instances are indeed di�cult to solve in limited computational time. We

explore di�erent heuristic methods to solve the microCHP planning problem. A

local search method, based on the dynamic programming formulation, shows a

large improvement in computational time; the deviation from the desired bounds

however is not satisfying. A basic version of an Approximate Dynamic Program-

ming method is used to estimate the outcome of the large dynamic programming

structure. Finally, a column generation technique o�ers a nice framework to mini-

mize the deviation from the desired aggregated electricity output. For simpli�ed

instances it is shown, based on a lower bound calculation, that this method can solve

this deviation (close) to optimality. �e di�culty in the microCHP planning prob-

lem is shown in the feasibility aspects of �nding solutions that respect requirements

on the energy e�cient operation of the individual appliances, on the ful�llment

of local heat demand, and on the total electricity output simultaneously. �ese

heuristic methods are appropriate for a practical implementation in the context

of scalability. �e division in global aggregation/optimization problems and local

optimization problems o�ers a framework that is scalable, in case of the local search

method and the column generation approach. In case of the Approximate Dynamic

Programming approach, simpli�cations in the treatment of the DP tree lead to

scalability.

Uncertainty in a practical setting

Next to solving the microCHP planning problem, we shortly sketch the in�uence

of demand uncertainty in the broader context of controlling this Virtual Power

Plant in a real world setting. �e TRIANA methodology is able to capture such

uncertainty in realtime. Moreoverwe show thatwe can anticipate on this uncertainty
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by reserving part of the total heat capacity, such that the original planned operation

can be completely followed during realtime operation.

Acting on electricity markets

In a real world setting, the insight that we can derive from the lower bound calcula-

tion can help us in the practical situation of the Virtual Power Plant, in which we

would like to act on an electricity market. In this case we want to guarantee that

a desired aggregated pattern can be reached by the individual generators. In an

exploratory phase, a sketch of the aggregated output can be found, using the lower

bound calculation as a guideline. �e actual planning of the individual microCHPs

can be postponed until a rough sketch is found that satis�es the (pro�t maximiza-

tion) objective of the owner of the Virtual Power Plant, and that has a promising

lower bound.

To be able to sell the production of a Virtual Power Plant, we want to o�er

the planned production to a day ahead electricity market. We show methods to

construct bids for two auction mechanisms on the day ahead electricity market. In

comparison with existing approaches, our bid construction has the special form of

having limited �exibility in the variation of the quantity-to-o�er combined with the

requirement of a minimum probability of winning the auction; bids are constructed

in the absence of a cost function for the VPP.

For the auction mechanism uniform pricing, the bid construction is given by a

unique bid for positive market prices and (possibly) an additional bid for negative

prices, in case the probability of winning the auction cannot be satis�ed with the

�rst bid.

For the auction mechanism pricing as bid, the bid construction is given by

successive bids (pt , qt), for which the quantity qt increases with the minimum
required di�erence of 0.1 MWh and the price pt is based on the predicted values
for the market clearing price µ (mean price), σ (standard deviation of the price)
and a coe�cient at , such that pt = µ + atσ . �e values of the di�erent coe�cients
at are optimized for a given range of the fraction µ

σ . Application of this form of bid

construction to real world data shows that 88% of the market clearing price can be

reached as average settlement price, when at most 5 di�erent bids are used.

�e general energy planning problem

�e second problem treated in this thesis concerns the general energy planning

problem. �is problem is an extension of the Unit Commitment Problem (UCP),

which treats the commitment and economic dispatch of electricity generators. We

add distributed generation, distributed storage and demand side management

possibilities to this problem, thereby shi�ing the focus of this optimization problem

towards the decentralization within the Smart Grid.

�e general energy planning problem di�ers from the UCP in size and in

objective. �e amount of appliances that are operated within the problem increases

signi�cantly. �e inclusion of a Virtual Power Plant shows that the problem is not
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only focusing on cost minimization for the central generators in the traditional

UCP, but it also concentrates on other objectives (e.g. pro�t maximization for

power plants or the cost e�ective use of local storage possibilities and demand side

management).

We propose a hierarchical structure to solve the general energy planning prob-

lem, in which the di�erent elements are solved by using di�erent sub problems in

di�erent planning levels. �e general framework consists of creating patterns for

single entities/appliances, combining patterns for such appliances on higher levels

into so-called aggregated patterns, and using these aggregated patterns to solve a

global planning problem.

Two di�erent case studies show the applicability of the method. �e �rst case

study treats a group of 5000 microCHPs in combination with 10 power plants, to

show the direct combination of optimizing a VPP and solving a traditional UCP.�e

second case study adds heat pumps, electrical cars, freezers and inhome batteries as

examples of other types of distributed generation, distributed storage and demand

side management.

7.2 Possibilities for future research

For the Virtual Power Plant case we propose a planning problem and explore corre-

sponding solution techniques, which give an indication of the real world problem

instances that we should be able to solve. To accomplish the step towards solving

a practical realization of the electricity supply chain, we need to �nd production

pro�les for a VPP by using a framework that is open to di�erent kinds of interac-

tion between households, the operator of a VPP, electricity markets, etcetera. �e

base for this framework is given by the microCHP planning problem, which could

be solved iteratively to include additional requirements from the real world. An

example of such an additional requirement treats the coupling between di�erent

days, in contrast with the time horizon of one day that we use in this work (in this

context we may think of a variable granularity of the time intervals).

From a mathematical point of view, the solution methods of the microCHP

planning problem may be studied in more detail. �e di�erent approaches that are

studied in this thesis might be open for improvements. An extra challenge may

be introduced by including stochastic aspects in the problem formulation, which

requires advanced methods to cope with demand and price uncertainty.

Regarding the general energy planning problem, we have sketched a framework,

by which combined problems are solved in the energy supply chain. Of course this

problem is open for di�erent combinations of objectives and to include di�erent

elements of a Smart Grid. A real world implementation requires cooperation

between di�erent end-users. �e general energy planning problem can be a helpful

tool in such situations, as long as we continue to model the possible extensions to

this problem by small-scale, tractable problems.



APPENDIXA
Creation of heat demand data

To represent the heat demand, sets of heat vectors S s = {heats1 , . . . , heatsN}, are
created, with each vector heatsi characterizing the heat demand for the 24 hours
of the day. If in some scenario a higher resolution of the time intervals is used, we

simply downscale these hourly values (no interpolation between hours is done). �e

hourly vectors are generated as in Algorithm 5, withw = 4 and s = 0. In a winter day
the average daily heat demand is assumed to be 54 kWh, which is typical for a cold

day in winter in �e Netherlands. �is equals the average total heat demand, if the

hourly demand (in Wh) is picked uniformly from the interval I = [500, 4000]. �e

function create_heat(p, I) creates a heat demand based on the random number
p and the interval I (using a uniform distribution over the interval I). Using the
decimal development of π in samples of four digits length , semi-random numbers
are used to produce 24 hourly heat demands. �ese 24 values are then ordened

semi-randomly. �e goal of this ordening is to achieve heat pro�les which are

somehow close to a real pro�le. We specify this by creating a pro�le with two peaks,

one in the morning hours (between 7 a.m. and 11 a.m.) and one in the evening

hours (between 6 p.m. and 10 p.m.). To create these peaks, two hours are selected

semi-randomly from the corresponding sets {7, 8, 9, 10} and {18, 19, 20, 21} and

the two highest of the 24 values are assigned to these selected hours. �e function

match(p, F) selects the hour from the set F, where the probability p is used to pick
the hour in the set F following a uniform distribution. �en, the remaining values
T iunass i gned are, in decreasing order, assigned to an hour, where this hour can only
be chosen from the set of unassigned hours that di�ers one from an already assigned

hour (i.e. the set f reeplaces that is created by the function f reeplaces(heatsi),
which assigns immediate neighbouring hours of already assigned hours to a set).

�e semi-random numbers and the function match(p, F) are used again to decide
which of these hours in f reeplaces is assigned the given value.
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Algorithm 5Heat demand creation for N microCHPs
Input: decimal development of π, starting from a position s, a width w, and an
interval I
pirest⇐ π × 10s − ⌊π × 10s⌋
for i=1 to N do
for j=1 to 24 do
tempheat i , j ⇐ create_heat(⌊pirest × 10w⌋, I)
pirest⇐ pirest × 10w − ⌊pirest × 10w⌋

end for
tempheat i ⇐ sort_non_increasing(tempheat i)

end for
for i=1 to N do

for j = 1 to 24 do
p i , j ⇐ ⌊pirest×10w⌋

10w

pirest⇐ pirest × 10w − ⌊pirest × 10w⌋
end for

end for
for i=1 to N do
T iunass i gned ⇐ tempheat i
f reeplaces⇐ {7, 8, 9, 10}

heatsi ,match(p i ,1 , f re e pl aces) ⇐ f irst(T iunass i gned)
f reeplaces⇐ {18, 19, 20, 21}

heatsi ,match(p i ,2 , f re e pl aces) ⇐ f irst(T iunass i gned)
k⇐ 3
while T iunass i gned ≠ ∅ do
f reeplaces⇐ f reeplaces(heatsi)
heatsi ,match(p i ,k , f re e pl aces) ⇐ f irst(T iunass i gned)
k⇐ k + 1

end while
end for
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